跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許峻連
論文名稱:以波元分析法進行影像對比強化
論文名稱(外文):Wavelet Analysis for Image Contrast Enhancement
指導教授:林康平林康平引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1997
畢業學年度:85
語文別:中文
論文頁數:75
中文關鍵詞:波元轉換非線性強化影像雜訊去除
相關次數:
  • 被引用被引用:1
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫學影像分析能協助醫師進行正確的診斷,數位電腦技術將會提高醫師發現病徵的效率。傳統影像對比強化技術,例如非銳化罩遮法及長條圖等化法,均傾向強化原已明顯的邊緣,對於加大影像展示於電腦螢幕時之動態範圍並無很大效用,在本文中以波元轉換為基礎發展出一種技術,根據處理醫學影像之結果,它比傳統對比強化技術有較高的影像對比強化效果,本法的優點在於不需增加或改變現有臨床使用之儀器。
本文之邊緣導向對比強化的方法,將展示於乳部及胸部醫學影像上。首先,波元轉換用以產生影像之多階式的梯度分解,各次階信號將會運用於以加強影像特徵為架構之各階不同的非線性強化。運用波元轉換方法,於各階選擇一適當轉換式以減少雜訊,因雜訊是普遍分佈於各階中的。將去除雜訊技術合併,影像將可得到非線性強化。
為了評估本文方法對影像對比強化的改善效果,在此採用一種統計灰階分佈的測量方法,來比較各種不同方法的效果。
根據電腦模擬,本論文對比強化法之結果較傳統影像對比強化法為佳,一般而言,處理後之影像其對比強化比率可較原影像提高達六倍以上。
Medical image analysis can help physicians to perform accurate diagnosis. Digital computer technique can also improve physicians'' finding effectively. Traditional image contrast enhancement techniques, for example, unsharp masking and histogram equalization, tend only to emphasize important on edge, which leads inefficient usages of the dynamic ranges available on a computer display screen. In this thesis, a technique based on wavelet transform was developed. The results of processed medical images perform higher image contrast than that obtained by traditional image contrast enhancement techniques. The advantage of presented method is that it does not increase or change the equipments that are currently used.
In this thesis, the edge-based contrast enhancement method was demonstrated on mammogram and chest radiography. At the first step, wavelet transform generates multiscale gradient decomposition of images. The subscales'' information will provide the framework for applying various nonlinear enhancement at each scale in order to emphasize features of images. Using the wavelet decomposition method, noise will be reduced by choosing a proper transformation at each scale where noise are more prevalent. Incorporating denoising technique, images can be nonlinearly enhanced.
In order to evaluate the improvement of the presented method for image contrast enhancement, a method which statistical measures of gray level distribution was used to compare the performances of different methods.
According to computer simulations, the presented method shows better results than that of traditional image enhancement methods. In general, the processed image can have six times better contrast higher than the original images.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top