跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王啟昌
研究生(外文):wang, Chi-Chang
論文名稱:省電型電路之設計與應用
論文名稱(外文):POWER SAVING CIRCUIT DESIGN AND ITS APPLICATION
指導教授:吳錦川
指導教授(外文):Jiin-chuan Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1997
畢業學年度:85
語文別:中文
論文頁數:117
中文關鍵詞:省電直流電壓轉換數位信號位階轉換類比信號輸出
外文關鍵詞:power savingvoltage converterlevel converteranalog output buffer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
低功率高品質之超大型積体電路為設計者追求之目標。混合式電路中常使
用的電源供應和介面電路有直流電壓轉換、數位信號位階轉換、和類比信
號輸出等電路,是本論文省電設計探討的對象。本論文共設計了三個晶片
,都已成功的驗證,其中包含(1)應用在串列資料通信正負雙電荷充電式
電源功率效益改善;(2)應用在數位電路的高速、省電TTL至CMOS輸入驅動
器;(3)應用平面顯示器資料線驅動器之低功率B類驅動放大器。(1) 首先
,將用於信號位階轉換電路設計成頻率轉換電路,並使正負雙電荷充電式
電源的工作頻率會隨負載自動改變,頻率變動區間為100Hz至25KHz。因而
,達成電荷充電式電源功率效益改善之目標。當最大負載電流為12mA,其
輸出正電壓大於6.5V和負電壓小於-6V,符合RS-232C串列通信應用之EIA
標準。另外,為使電荷充電式電源開始工作時,能正常工作和避免電晶体
被破壞,起動電路被設計在同一晶片上。不重疊雙相時序和開關電晶体速
度不同之電路設計,可消除和減少短路功率消耗。實驗證明新的電荷充電
式電源實際獲得兩相好處是:(i)電源功率效益改進從2%至32倍之多;(
ii)電晶体的崩潰電壓從19.2V降到17V。(2) 本論文設計出一分離式自偏
電壓差動放大器之信號位階轉換電路,在受到半導体製程變動影響和電源
電壓從3.3V改變至5V時,仍具有低功率消耗、高速運行、和邏輯臨界電壓
變化較小之特性。在與其它三種信號位階轉換電路模擬分析,發現信號頻
率高於21MHz時,新的信號位階轉換電路功率消耗為最少。實際驗證中,
當電源電壓是5V和3.3V時,邏輯臨界電壓變化分別為+-24 mV和+-16 mV。
換句話說電源電壓從3.3V改變至5V時,邏輯臨界電壓變化僅為10mV。當電
源電壓是5V和工作頻率是53MHz時,功率消耗則為0.37mW和電路延遲時間
為0.37nS。當電源電壓是3.3V和工作頻率是47MHz時,功率消耗則為0.14
mW和電路延遲時間為0.51nS。(3) 最後,以比較器取代傳統輸出驅動器中
的誤差放大器,設計出一低功率B類輸出驅動器,可應用於平面顯示器中
。由於比較器的輸出為數位信號,當輸入電壓等於輸出電壓時,可將輸出
級的電晶体完全關閉,就不會有靜態工作電流存在,而達到省電的效果。
實驗證明輸出驅動器的靜態工作電流為54uA。當電源電壓為5V和負載電容
為600pF時,輸出信號最大輸入偏差值為 +-mV和擺幅範圍為0.5V至5V。另
外,對輸出信號擺幅範圍為4V之穩定時間是8微秒,符合86赫茲框架掃瞄
率之1204*1280素元液晶顯示器所須規格。
Low power design with high performance is major strend for CMOS
VLSI system design. In mixed mode circuits, the voltage
generations, level conversions, and output analog signals are
essential. This thesis describes the design of power saving
voltage generator, level converter, and buffer amplifier which
are components of mixed mode circuits. The designed components
include: (1) a power efficient charge pump which is used to
generate dual high voltage for RS-232C applications; (2) a
power efficient, high speed TTL-to-CMOS input buffer which is
used in level conversion stage for CMOS digital circuits
applications; (3) a low power CLASS-B output buffer which is
used as data line driver for LCD or FED applications.
Conventional charge pump circuits use a fixed switching
frequency which leads to power efficiency degradation for
loading less than the rated loading. This thesis proposes a
level shifter design that also functions as a frequency
converter to automatically vary the switching frequency of a
dual charge pump circuit according to the loading. The
switching frequency is designed to be 25K Hz with 12 mA loading
on both inverting and non-inverting outputs. The output
voltages of the dual charge pump circuits The output voltages of
the dual charge pump circuits are V+ > 6.5 V and V- < -6 V which
meet the specification of EIA standard for serial communication
(RS-232C applications). The switching frequency is
automatically reduced when loading is lighter to improve the
power efficiency. The frequency tuning range of this circuit is
designed to be from 100 Hz to 25 KHz. In addition, a start-up
circuit is included to ensure proper pumping action and avoid
latch-up during power-up. A non-overlapped two phase clocks and
buffer is used to eliminate short-circuit power dissipation.
The measured results show that the new charge pump has two
advantages: (1) the power dissipation of the charge pump is
improved by a factor of 32 at no load and by 2% at rated loading
of 500ohm; (2) the breakdown voltage requirement is reduced from
19.2V to 17V. Secondly, a separately self-biased differential
amplifier (SSDA) TTL-to-CMOS input buffer is proposed which has
low power dissipation, high operating speed, and its logic
threshold voltage is less sensitive to process and supply
voltage variations. Its logic threshold voltage does not change
when supply voltage is changed from 3.3V to 5V, making it
suitable for 3.3V/5V dual voltage applications. Its simulated
performances are compared with those of inverter, SPSIB, and
CSDA buffers. The SSDA buffer has the lowest power dissipation
for inputs higher than 21MHz. Its operating speed is comparable
to the invert, and much faster than the CSDA and SPSIB buffers.
The measured logic threshold voltage variations due to process
are +-24mV for 5V supply, and +-16mV for 3.3V supply. Its logic
threshold voltage variations due to supply voltage variation
from 3.3V to 5V are within 10mV. With 5V supply, 53MHz input,
and driving another SSDA buffer, its power dissipation is 0.37mW
and delay is 0.45ns. With 3.3 V supply and 47MHz input, its
power dissipation is 0.14mW and delay is 0.51ns. A low power
Class-B output buffer using comparator for driving large
capacitance in flat panel display is presented in this thesis.
Due to the large number of output bufferA low power Class-B
output buffer using comparator for driving large s on a column
driver chip, the quiescent current of the output buffer must be
reduced. A comparator which produces full-swing digital output
is used, in stead of an error amplifier using conventional
output buffer, in the negative feedback path to eliminate
quiescent current in the last output stage. The measured static
current is 54uA. With 5V supply voltage and 600pF load
capacitance, the maximum tracking error voltage is +-8mV, the
output voltage swing is from 0.5V to 5V. The settling time for
4V swing to 0.2% is 8us, which is more than adequate for
driving 1204*1280 pixels LCD panel with 86Hz frame rate.
cover
ABSTRACT (CHINESE)
ABSTRACT (ENGLISH)
ACKNOWLEDGMENT
CONTNETS
TABLE CAPTIONS
FIGURE CAPTIONS
CHAPTER 1 INTRODUCTION
1.1 VLSI TECHNOLOGY FOR MIXED MODE CIRCUITS
1.2 POWER DISSIQATION IN MIXED MODE CIRCUITS
1.3 VOLTAGE GENERATIONS
1.4 LEVEL CONVERSIONS
1.5 BUFFER AMPLIFIERS
1.6 ORGANIZATION OF THIS THESIS
CHAPTER 2 EFFICIENCY IMPROVEMENT IN CHARGE PUMP CIRCUITS
2.1 INTRODUCTION
2.2 CHARGE PUMP CIRCUIT DESIGN
2.3 A CMOS DUAL CHARGE PUMP
2.4 EXPERIMENTAL RESULTS
2.5 SUMMARY
CHAPTER 3 THE DESIGN AND ANALYSIS OF POWER EFFICIENT, HIGH SPEED TTL-TO-CMOS INPUT BUFFER
3.1 INTRODUCTION
3.2 CIRCUIT CONFIGURATIONS AND OPERATIONS
3.3 PERFORMANCES FOR INPUT BUFFERS
3.4 EXPERIMENTAL RESULTS & DIXCUSSION
3.5 SUMMARY
CHAPTER 4 THE DESIGN ANALYSIS OF LOW POWER CLASS-B OUTPUT BUFFER
4.1 INTRODUCATION
4.2 DESCRIPTION OF THE OUTPUT BUFFER
4.3 EXPERIMENTAL RESULTS
4.4 SUMMERY
CHAPTER 5 CONCLUSION AND FUTURE WORK
5.1 CONCLUSION
5.2 FUTURE WORK
REFERENCES
VITA
PUBLICATION LIST
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top