|
TDDB and latch-up in deep submicron CMOS are studied in this thesis. TDDB is discussed in the Part A with emphasis on developing a simulator for instrinsic and B-mode oxide failures. The Part B investigates CMOS latch-up and concentrates on the modeling of the holding point. In the Part A, a C-language program is developed to simulate the TDDB distribution of ultra- thin oxides based on the work by R. Degraeve et al. in 1995. Basic concepts of Monte-Carlo method and some parameters for the simulation are discussed in more detail. Combining the program with the concept of oxide thinning by J. C. Lee et al., a new idea is proposed to simulate the statistical distribution of B- mode oxide failures. The modeling of the holding point in the Part B is based on a physically-based analytical model considering conductivity modulation and base push-outby J. A. Seitchik et al. in 1987. The internal behavior of parasitic SCR in CMOS circuits is studied completely by a two-dimensional device simulator. With the help of the above two results, a compact model for the holding voltage is constructed. Then incorporating a structure-oriented holding current formula into this model, a compact, closed-form expression for the holding voltage is produced. Finally, a full model for the holding point is developed. It is surprising that the full model can explain the temperature behavior of latch-up very well. Both of the compact and full models are thoroughly judged by experimental results.
|