跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖雅
研究生(外文):WANG, SHENG-YA
論文名稱:自我調整批次製程控制器-----以半導體製程為例
論文名稱(外文):Self-Tuning Run by Run Process Controller
指導教授:郭瑞祥郭瑞祥引用關係
指導教授(外文):RUEY-SHAN GUO
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:商學研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:1997
畢業學年度:85
語文別:中文
論文頁數:97
中文關鍵詞:製程控制批次控制器自我調整控制
外文關鍵詞:PROCESS CONTROLRUN BY RUN CONTROLSELF-TUNINGcontrol
相關次數:
  • 被引用被引用:2
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,針對晶圓廠的製程而開發出許多先進的製程控制技術,其
中之一是MIT提出的EWMA(Exponentially Weighted Moving Average)批次
控制器,透過每一批調整機台設定值來控制製程的漂移,本研究即針對此
批次控制器加以改良,使之能動態地調整控制參數,將輸出值更有效地拉
回目標值,減少MSE(Mean Square Error From Target)。 EWMA控制器
中,假設製程模型為線性多項式,假設斜率項可在線外準確估計且不于更
改,然後透過常數項的調整來彌補製程漂移,常數項是根據過去資料的指
數移動加權平均數(EWMA)來更新,其中決定控制效果最重要的參數便是
EWMA的參數大小。而經由統計推導可求出使MSE最小的最適參數解係決定
於製程漂移速度和控制模型的斜率項誤差大小,本研究假設斜率項為已知
,發展出一個估計漂移速度的模組和一個決定何時調整控制參數的模組,
使控制參數能依據漂移速度的估計值自動微調至最佳值。 本研究提出
兩種漂移速度估計量:一為不偏估計,一為偏估計,分別從統計理論和蒙
地卡羅模擬來探討兩者的差異,在沒有模型誤差下,兩者都能在五十批的
地方估計到製程真實的漂移速度。另外,發展參數調整的決策法則,只有
檢定出漂移速度估計值有顯著變異時,才根據最新的估計值調整控制參數
。而本研究依據資料時點是否持續累計而將參數調整之決策法則分為不歸
零(No Reset) 和歸零(Reset)兩種。而不論是歸零或不歸零,在製程漂移
速度為固定和不固定時的控制效果都比原來的EWMA控制器佳。

In recent years, many process control techniques have been
developedin the scenario of wafer fabrication, one of which is
the MIT's EWMA (exponentially weighted moving average)
controller which compensates for process drifts by adjusting the
process inputs on a run-by-run basis. The goal of this thesis is
to further enhance the MIT's approach by self-tuning the control
parameter dynamically so that process outputscan be maintained
on the targets as close as possible. In the EWMA controller,
process models are assumed as linear polynomials,in which
constant terms are tuned run-by-run based on the EWMA
algorithmwhile slope terms are fixed and determined off-line.
The optimal controlparameter, which determines the effectiveness
of the controller, is obtained by minimizing the equation of
mean square error from target. Based on the statistical
derivation, it is dependent on the estimation of the drift rate
and model slope terms. In this thesis, we assume the slope
terms are correct and propose two modules, one to estimate the
drift rate and the other one to decide when to change the
control parameter, so that the optimal control parameter can be
self-tuned dynamically. In the drift rate estimation module,
both biased and unbiased estimates are derived using statistical
theory and characterized using Monte Carol simulations. Results
show that both methods can estimate the true process drift rates
within 50 runs. In the decision module, the control parameter
is updated only when there is a statistically significant change
in the drift rate estimate. Two decision rules under reset and
no reset conditions are established and their performances are
evaluated using Monte Carol simulations. Results show that the
proposed self-tuning EWMA controller can capture the process
characteristics dynamically and achieve a better performance
than the original EWMA controller.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top