(3.230.76.48) 您好!臺灣時間:2021/04/15 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾昆福
研究生(外文):Kun-Fu Tseng
論文名稱:積體電路構裝之熱特性分析、預測與模擬
論文名稱(外文):The thermal characteristics analysis, prediction and simulation of IC packaging
指導教授:陸 續
指導教授(外文):Luke,Su Lu
學位類別:博士
校院名稱:中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:65
中文關鍵詞:熱阻-熱容模型溫度預測單資料取樣雙資料取樣
外文關鍵詞:Thermal resistance- Thermal capacitanceTemperature PredictionOne sampled DatumTwo Sampled Data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文主要探討電子構裝的熱特性分析及溫度預測,為了分析電子構裝內、外的熱特性,
我們設計了兩組不同的晶片以量測與驗證其特性:一組是合乎國際半導體設備和材料協會
(Semiconductor Equipment and Material International)標準的構裝熱阻驗證晶片;
另一組為驗證晶片內特性的晶片,在晶片不同位置設計溫度感應器,以量測晶片內溫度分佈。
另外為了能預測晶片溫度我們提出以熱阻-熱容 (R-C) 模型做為溫度預測的方法,
這種方法主要關鍵在如何有效獲得RC值,本文中RC的獲得方法利用二種方式:
(1) 近似法 -- 這個方法以脈波(Pulse) 方式加熱,利用暫態放熱時的溫度、時間關係
取得一近似的RC值代入方程式中以預測穩態溫度。 這方法可快速求得穩態溫度,尤其在浸入油中
(Oil Bathed) 及強迫空氣對流 (Forced Air Convection) 的環境中較佳,從實驗以1,2,3瓦
熱功率加入IC中,預測結果與穩態量測相比所得誤差最大6個百分點。但在靜態氣流 (Still Air)
環境中則誤差太大須進一步修正。(2)曲線擬合 (Curve Fitting) 法-- 這個方法的加熱方式與
傳統加熱方式一樣,加熱持續由開始至結束,保持固定熱功率,然後每隔一段時間量測暫態溫度
一次,將暫態量測的值利用曲線擬合萃取出一 RC 值。曲線擬合萃取參數的方法由於資料取樣方法不同,
分為單資料取樣 (One Sampled Datum) 及雙資料取樣法 (Two Sampled Data)。根據實驗,在上述三種
不同的環境下進行量測,驗證這方法當準確,可增加溫度保護的靈敏度及整體性,是一快速有效的溫度
預測方法。
Abstract

The purpose of this dissertation is to analyze the thermal characteristics and to predict the steady state temperature of Integrated Circuit (IC) packages. To obtain the thermal characteristics of IC packages, two sets of test chips were designed: one was for thermal resistance measurements
which is conformed to the Semiconductor Equipment and Material International (SEMI) standard, and the other was for the temperature distribution measurements inside the chips. To obtain the temperature profile of the second set of chips, twelve temperature sensors were distributed at different
locations on the chips. For temperature prediction, a thermal R-C (resistance-capacitance) model was proposed to predict the steady state temperature from transient state. To accurately predict the steady state temperature with this new model, accurate RC parameters were needed. To this end,
two methodologies are developed in this dissertation: the first methodology uses an approximated RC value which was obtained from transient data; and the second methodology employed curve fitting to extract the RC values from transient data. In the first method, a heating pulse was applied to
the heater on the test chips and the RC values were obtained from the sampled temperatures during power off stages. After comparing experimental data from the conventional methodologies, the steady state temperature can be fast obtained by the new methodology without losing accuracy if the test
chips were in oil bathed and forced air convection environments. By the second methodology, the heating power was continuously applied to the heater on the chips from beginning to the steady state and temperatures were measured every few seconds. Then, necessary parameters can be extracted
from curve fitting processes so that the predict steady state temperature were obtained with only one sampled datum (OSD) or two sampled data (TSD). It is concluded that the new methodologies, which makes the over-temperature protection function more reliable, efficient, sensible and faster,
can be used as an assistance for over-temperature protection of a circuit or a system.
封面
誌謝
摘要
Abstract
目錄
表錄
圖錄
符號與縮寫
1 緒論
1.1 前言
1.2 電子構裝之回顧、現況與未來發展
1.3 電子構裝當前所面臨的挑戰
1.4 論文架構及研究重點
2 電子構裝的熱特性分析方法
2.1 直接量測法
2.2 間接量測法
2.3 電子構裝之模擬
3 溫度感應與預測
3.1 溫度感應
3.1.1 溫度感應器
3.1.2 以複晶矽做為熱感應元件之研究
3.2 溫度預測
4 實驗設計與結果討論
4.1 實驗設計
4.2 結果與討論
4.2.1 不同構裝之熱阻量測與模擬結果比較
4.2.2 溫度預測之結果
5 結論
參考文獻
自傳
參 考 文 獻
1. Laura, P., peeding the Transition to 0.18 mm,?Semiconductor International, pp. 61-70, January (1998).
2.Avram, B. C., “Thermal Management of Air and Liquid-Cooled Multichip Modules,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol. CHMT-10, pp.159-175 (1987).
3. Mark, M. K., and Heaton, J., “Emerging Trends in Packaging
Design,?Asian Electronics Engineer, pp. 202-204, May (1997).
4. Tummala, R. R., icroelectronics Material Challenges in the 21st Centry,?Advancing Microelectronics, vol.24, no.4, pp. 10-17, July / August (1997).
5.Krusius, J. P., and Li, C. Y., “A Review of Electronic Packaging Research,?Semiconductor International, pp. 131-142, July (1995).
6. McCluskey, P., and Das, J. J., ackaging of Power Electronics for High Temperature Application,?Advancing Microelectronics, vol.25, no.1, pp. 19-24, Jan. / Feb. (1997).
7. Oettinger, R. F., hermal Evaluation of VLSI Packages Using Test Chips - A Critical Review,?Solid State Technology, pp. 169-179, February (1984).
8. Lauriente, M., and Fergason, J. L.,“Liquid Crystal Plot the Hot Spots,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol.18, pp.732-738 (1995).
9. Brenner, D. J., “A Technology for Measure the Temperature of Transistors by Means of Fluorescent Phosphor,?NBS Tech. NOTE 591, July (1971).
10. Sawyer, D. E., and Berning, D. W.,“Thermal Mapping of Transistors with a Laser Scanner,?Proc. IEEE, vol.64, pp. 1634-1635 (1976).
11. Hollman, K., Comer, R. H., Hancock, R. D., and Pettingell, J., hermal Anlysis of Microelectronics Devices Using a Hot Spot Detection System Based on Vapor Bubble Technology,?Int. Symp. for Testing and Failure Analysis, Santa Clara, CA, Oct. (1982).
12. Yoder, J. R., “Temperature Measurement with an Infrared Microscope,?Applied Optics, vol. 7, no. 9, pp.1791-1796, Sept. (1968).
13.SEMI G38-87, est Method Still-Air Forced-Air Junction-to-Ambient Thermal Resistance Measurements of Integrated Circuit Packages,?SEMI, pp. 173-178 (1992).
14. SEMI G32-86,“Guideline for Unencapsulated Thermal Test Chip,?SEMI, pp. 143-146 (1992).
15. SEMI G42-88,“Specification Thermal Test Board Standardization for Junction-to-Ambient Thermal Resistance of Semiconductor Packages,? SEMI, pp. 195-200 (1992).
16. Andrews, J., “Package Thermal Resistance Model:Dependence on Equipment Design Compact Models,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol.11, pp. 528-537 (1988).
17. Malhammar, .,“Thermal Models for Circuit Board and Mcrocircuit, Today and Tomorrow,?CERT?1 Tutorial, Electronic Compoment Institute International Ltd. (1991).
18. hermal Characteristics,?Method 1212.1, MIL-STD 883B Test Method and Procedures for Microelectronics, Notice 3, Nov. (1980).
19. SEMI G43-87,“Test Method Junction-to-Case Thermal Resistance Measurements of Molded-Plastic Packages,?SEMI, pp. 205-208 (1992)
20. Lasance, J. M., Vinke, H., and Rosten, H., hermal Characteristics of Electronic Device with Boundary Condition Independent Compact Models,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol.18, no. 4, pp. 723-730 , December (1995).
21. Joiner, B., “Evaluation of Thermal Characterization Technology,?The International Journal of Microelectronics and Electronic Packaging, vol.18, no.2, pp. 14-16, Second Quarter (1995).
22. ANSYS User Manual Revision 5.0.
23. Burgos, J., Manno, V. P., and Azar, K.,“Achieving Accurate Thermal Characterization Using a CFD Code - A Case Study of Plastic Packages,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol.18, pp.732-738 (1995).
24. Mandurah, M. M., Saraswat, K. C., and Kamins, T. I., “A Model for Coduction in Polysilicon- Part I:Theory,?IEEE Trans. on Electronic Device, vol. 28, no. 10, October (1981).
25. Seto, J. Y., “The Electrical Property of Polycrystalline Silicon ,?J. Appl. Phys., vol. 46, pp. 5247-5253 (1975).
26. Kato, K., Ono, T., and Amemiya, Y., “A Physical Mechanism of Current-Induced Resistance Decrease in Heavily Doped Polysilicon Resistors,?IEEE Trans. on Electronic Device, vol. 29, no. 8, August (1982).
27. Feldbaumer, D. W., Babcock, J. A., Mercier, V. M., and Chun, K. Y., ulse Current Trimming of Polysilicon Resistors,?IEEE Trans. on Elctronic Device, vol. 42, no. 4, April (1995).
28. Min, Y. J., Palisoc, A. L., and Lee, C. C.,“Transient Thermal Study of Semiconductor Devices,?IEEE Trans. Components, Hybrid, Manuf. Technol., vol.13, no. 4, pp. 980-988 (1990).
29. Touloukian, Y. S., Ed., “Thermophysical Properties of Material,”vol.Ⅰ - Thermal Conductivity - Metallic Element and Alloys, p. 339, Plenum Publishing Crop. (1970).
30. Y. S. Touloukian, Ed., “Thermophysical Properties of Material,”vol. Ⅱ - Thermal Conductivity - Nonmetallic Solids , p. 119, Plenum Publishing Crop. (1970).
31. 陳俊宏,“ 功率積體電路之熱分析模擬 ”,中正理工學院碩士班論文 (84年)。
32. 黃忠良,“功率積體電路構裝後之熱阻及熱應力量測",中正理工學院 碩士班論文 (85年)。
33. 鄧俊民,“積體電路構裝之熱分析模擬及熱應力分析" ,中正理工學院 碩士班論文 (85年)。
34. OriginTM User Manual.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔