跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鈕健
研究生(外文):Jiann NEOU
論文名稱:精密定位平台系統之研製
指導教授:趙崇禮趙崇禮引用關係王修平王修平引用關係
指導教授(外文):Choung-Lii CHAOHsiu-Ping WANG
學位類別:博士
校院名稱:中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:79
中文關鍵詞:精密定位平台氣潤式摩擦驅動裝置PID控制器模式參考適應控制器Mixed Gain Scheduling/MRAC控制器非接觸式刀具對心系統
外文關鍵詞:Precision Positioning SystemAir-lubricated Capstan DrivePID ControllerMRAC ControllerMGS/MRAC ControllerNon-contact Precision Tool Setting System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文係研製完成一組具有高精度、高復現性及高強健性特質的精密定位平台系統以供奈米工程使用。平台機構設計部份選用具低摩擦力的組件來減少機構中摩擦對定位精度之影響;此外由於傳統雙滾輪摩擦驅動裝置在機構運動時仍會產生較大的摩擦力,因此本研究發展氣潤式摩擦驅動裝置予以改善。實驗利用相同組件驗證氣潤式摩擦驅動裝置與傳統雙滾輪摩擦驅動裝置在不同實驗條件下因膠滑現象而產生的定位誤差大小。最後結果證明氣潤式摩擦驅動裝置在執行50nm及20nm大小步階運動時所產生的定位誤差可降至±15nm以內,此外同一系統在執行10nm/sec的低速度運動時產生的循跡誤差亦保持在±15nm以內。
在定位平台控制器設計方面,本研究發展固定增益PID控制器、模式參考適應控制器及Mixed Gain Scheduling/MRAC控制器並分別探討其時域響應、頻域響應及強健性。實驗結果證明(1)氣潤式摩擦驅動裝置在巨觀與微觀狀況下的物理特性極為一致,所以模式參考適應控制器在巨/微觀狀況下均可適用。(2)以強健性表現而言,固定增益PID控制器較差;模式參考適應控制器具備對平台負荷變化的強健性但無法適用於精密定位所須之巨大衝程變化;Mixed Gain Scheduling/MRAC控制器則在平台負荷增加至原始重量的521%及運動衝程由25nm變化至10mm時均能保持與原設計相符的響應結果。
本研究最後利用CCD攝影機解決精密定位平台在實際應用時平台感測器無法得知負載物絕對位置問題,並發展應用於超精密車削加工機上之非接觸式刀具對心系統。經以圓弧刀、半圓弧刀及尖刀於超精密加工機上做刀具往復移動定位比對測試證明,無論在X方向或Z方向,本系統閉合誤差均可收斂至±1mm範圍之內。實際切削加工球面( R=150mm, 10f OD )之製程中做線上更換刀具實驗證明,本系統可將因製程中換刀所造成之工件形狀誤差保持於±0.1mm之範圍內。
Precision positioning systems with high resolution, accuracy and repeatability play important roles in the advances in areas such as precision machining, MEMS, semiconductor technologies and metrology systems. A good precision positioning system is required to be (1) fast responding with no overshoot, (2) high accuracy, high repeatability and low steady state error and (3) suitable for various stroke distances and operation environments. To meet these requirements, a good design/selection of mechanical elements to minimize the non-linearities in the system (such as stick-slip and backlash) and a robust and disturbance rejection controller are of essential importance.
This study is aimed to develop and build a precision positioning stage. An air-lubricated capstan drive and air-lubricated slides were used in the developed staged to minimized the backlash and the stick-slip friction in the servo system. As a result, the stick-slip induced positioning error was kept within 15nm on the improved air-lubricated capstan drive system when moving at velocity of 10nm/sec.
A model reference adaptive controller(MRAC) was developed to control the capstan drive system for precision positioning. Accuracy better than ±15nm without any overshooting in all conditions tested was achieved in this study using the single-mode MRAC. Disturbance resistance of the system was also proved to be satisfactory. However, the performances of the fixed gain MRAC controller deteriorated when the system subjected to varying stroke lengths . To overcome this deficiency, a piecewise linear gain MRAC approach and mixed gain scheduling model reference adaptive control (MGS/MRAC) approach were used in the present research to improve the performance of model reference adaptive control with fixed gain (FG/MRAC) in long stroke precision positioning system. The results showed that while MGS/MRAC demonstrated consistent performances and robustness when the stroke length varied from 25nm to 10mm and loads increased to 521% of its original mass; PID performed poorly on both accounts and FG/MRAC, though had good rersistance to varying loads, went unstabled when the stroke length was increased to 10mm.
A non-contact precision tool setting system is also developed and built in this study to resolve the problem that, on a precision machine tool, the relative positions of workpiece/tool and tool shape can not be detected by a precision stage alone. The edge-detection image processing technique is used in the present tool setting system to detected the tool tip position and tool shape. The results show that tools of different shapes namely round, half-round and sharp tool can all be positioned to within an error band of ±1mm by using the developed tool setting system.
封面
誌謝
摘要
Abstract
目錄
表錄
圖錄
1緒論
1.1研究背景
1.2精密定位平台系統相關技術回顧
1.3 本文研究方法及成果概述
1.4 論文章節架構
2精密定位平台系統機構設計
2.1 氣潤式摩擦驅動裝置機構
2.2 實驗設備
2.3 實驗與討論
2.3.1 頻域測試
2.3.2 時域測試
2.3.2.1定位平台單一步階運動
2.3.2.2定位平台正反向步階運動
2.3.2.3定位平台等速運動測試
3精密定位平台系統控制器設計
3.1 氣潤式摩擦驅動裝置機構巨/微觀動態特性及數學模式分析
3.2 模式參考適應控制器
3.2.1模式參考適應控制器設計
3.3.2實驗與討論
3.3 Mixed Gain Scheduling/MRAC控制器(MGS/MRAC Controller)
3.3.1MGS /MRAC控制器設計
3.3.2實驗與討論
4非接觸式精密刀具定位系統之研製
4.1 刀具影像邊緣偵測
4.2 刀具對心實驗設計
4.3 實驗與討論
5.結論
參考文獻
自傳
1. 蔡新源,"奈米技術應用於機械領域之展望",次世代製造技術研討會,1-69(1998).
2. "經濟部五年科技發展計畫",中山科學研究院二所,65(1994).
3. Amerstring, B. H., Dupone, P., and Canudas de Wit,"A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction, " Automatica, 30(7), 1083(1994).
4. Tung, E. D., Anwar, G., and Tomizuka, M.., "Low Velocity Friction Compensation and Feedforword Solution Based on Repetitive Control," Journal of Dynamics Systems, Measurement and Control, 115, 279(1993).
5. Iezawa, M., and Imaga, A., "High Precision Control of AC Servo Motor Positioning Systems by Friction Compensation," Journal of Dynamic Systems, Measurement and Control, 39(3), 477(1996).
6. Yang, S., and Tomizuka, M., "Adaptive Pulse Width Control for Precise Positioning Under The Influence of Stiction and Coulomb Friction," Journal of Dynamic Systems, Measurement and Control, 110, 221(1998).
7. Dupont, P. E., and Dunlop, E. P., "Friction Modeling and PD Compensation at Very Low Velocities," Journal of Dynamic Systems, Measurement and Control, 117, 8(1995).
8. Karnopp, D., " Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems," Journal of Dynamic Systems, Measurement and Control, 107, 100 (1985).
9. Trang, Y. S., and Cheng, H. E., " An Investigation of Stick-Slip Friction on The Contouring Accuracy of CNC Machine Tools," Int. J. Mach. Tools Manufact., 35, 565(1995).
10. Youden, H., "Capstans or Lead Screw-Comparing the Performance of Diamond Turning Machines Under Operation Condition," Report of Rank Taylor Hobson Inc, 85(1993).
11. Takahashi, M., Otsuka, J., Ono, K., Usuda, T., and Tofuku, M., "Study of Precision Positioning using a Friction Drive," JSPE, 24, 21(1990).
12. Rao, G. S., and Ro, P. I., " Submicrometer Control of a Traction Drive Using State Feedback and Estimation," Precision Engineering, 124(1995).
13. Smith, M. H., Annaswamy, A. M., and Slocum, A. H., " Adaptive Control Strategies for a Precision Machine Tool Axis," Precision Engineering, 192(1995).
14. Plummer, A. R., and Vaughan, N. D., "Robust Adaptive Control for Hydraulic Servosystems," ASME Journal of Dynamic Systems, Measurement, and Control, 237(1996).
15. Lin, M. C., and Chen, J. S., "Experiments toward MRAC Design with Integral Compensation for Motor Drives," JSME, 38, 68(1995).
16. Hori, N., and Markazi, A. H. D., "A New Approach to the Design of Digital Model Reference Control Systems," JSME, 38(4), 712(1995).
17. Martin, C. A., Weingaertner, W. L., de Jesus, G. A. R., and Stoeterau, R. L., "Control Strategies Applied to Sub-micrometer Positioning," 9th Int. Preccision Engineering Summinar/ 4th Int. Conf. on Ultraprecision in Manufacturing Engineering (9-IPES/UME4), 464(1997).
18. Shimokohbe, A., Sato, K., and Shinsh, T., "Dynamics and Control of Precision Two-stage Positioning System," 9th Int. Preccision Engineering Seminar/ 4th Int. Conf. on Ultraprecision in Manufacturing Engineering (9-IPES/UME4), 165(1997).
19. Ro, P. I., and Hubbel, P. I., " Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion," ASME Journal of Dynamic System, Measurement, And Control, 103(1993).
20. Sato, K., Murayama, Y., and Imada, S., " Control and Elimination of Lead Screw Backlash for Ultra-Precision Positioning," JSME, 38, 36(1995).
21. Yonezawa, H., Hirata, Y., and Sasai, H., " Positioning Table with Accuracy and High Speed," Annals of the CIRP, 433(1990).
22. Sawai, N., Song, J., and Park. H., "Automated Measurement of Tool Wear Using an Image Processing System," Int. J. Japan Soc. Prec. Eng., 30(2), 112(1996).
23. Suchomel, M., Kraus, S., and Tax, P., "Tool''s Sharp and Position Direct Measurement by CCD Camera," 8th Int. Precision Engineering Seminar (8-IPES), 549(1995).
24. 趙崇禮、鈕健、楊耀波、許緯德、曾慶寧, "精密刀具定位系統之研製" , 次世代製造技術研討會,2.11(1997).
25. 鈕健、趙崇禮、謝保眾、董文山, "摩擦驅動裝置於超精密定位運動時膠滑現象之改進",第五屆國防科技研討會,2-139(1996).
26. Chao, C. L., and Neou, J., "An Investigation of Stick-Slip Friction on Capstan Drives at Very Low Velocities," Int. J. of the JSPE, 208(1997).
27. Chao, C. L., Wang, H. P., and Neou, J., "Model Reference Adaptive Control of Air-lubricated Capstan Drives for Precision Positioning," Submitted to Precision Engineering.
28. 趙崇禮、鈕健,"模式參考適應控制器應用於摩擦驅動裝置伺服機構之研究", 次世代製造技術研討會, 2.17(1997).
29. Chao, C. L., Neou, J., and Wang, H. P., "Model Reference Adaptive Control of Long Stroke Precision Positioning Systems with Piecewise Linear Gain" , Int. J. of the JSPE, To be published at the end of the Sept. 1998.
30. 趙崇禮、王修平、鈕健,"以Mixed Gain Scheduling/MRAC控制器應用於超精密定位系統之研究",將於中正領學報第二十七卷第一期發表。
31. 趙崇禮、楊耀波、鈕健、許緯德、林希賢、曾慶寧,"非接觸式精密刀具定位系統之研究",將於中正領學報第二十七卷第二期發表。
32. Slocum, A. H., Precision Machine Design, Prentice Hall Inc., New Jesery, U.S.A. (1992).
33. Ziegler, J. G., and Nichols, N. B., "OptimumSetting for Automatic Controller", Trans. ASME., 64, 759(1942).
34. Astrom, K. J., and Wittenmark, B., Adaptive Control, Addison Wesley, New York, U.S.A. (1990).
35. Chao, C. L., and Gee, A. E., " Investigation of Brittle/Ductile Transition in Single Point Maching Glassy Materials Using a Ruling Engine", 5th Int. Precision Engineering Seminar & Annual Meeting of Amer. Soc. for Precision Engineering, 18(1989).
36. Puttick, K. E., Whitmore, L. C., Chao, C. L., and Gee, A. E., " Transmission Electron Microscopy of Nanomachined Silicon Crystals," Philosophical Magazine A, 69(1), 91(1994).
37. Liu, Q., Zhang, C., and Wang, H. P. B., "Form-Accuracy Analysis and Prediction in Computer Integrated Manufacturing," Int. J. Mach. Tools Manufact., 37(3), 237(1997).
38. Pratt, W. K., Digital Image Processing, Wiley Interscience (1991).
39. Rosenfeld, A., and Terre, P. De La "Histogram Concavity Analysis as an Aid in Thresholding Selection," IEEE Trans. Systems Man Cybernet., 231(1983).
40. 連國珍, 數位影像處理, 儒林圖書有限公司 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文