跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志昌
研究生(外文):Chen, Jun-Chang
論文名稱:一個利用限制式的Gibbs/MRF之影像濾波器
論文名稱(外文):A Constrained Gibbs/MRF Filter For Image Enhancement
指導教授:林立謙
指導教授(外文):Lin Li-Chan
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:74
中文關鍵詞:方向性之限制Gibbs馬可夫隨機體影像加強非高斯雜訊非線性濾波器空間相關性
外文關鍵詞:Constrained Gibbs Markov Random FieldImage Enhancementnon-Gaussian NoiseNonlinear FilterSpatial-order information
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來去除高斯雜訊的主要方法大都採用非線性濾波器,但是非線性
濾波器之設計也面臨了一個主要的問題,就是如何將影像之空間相關性考
慮進去。針對這個問題也有很多的研究論文發表,但都是以傳統式之順序
統計值設計而成,因此其效果有限,一篇最近的文章提出利用Gibbs/MRF
來當做影像模型,以擷取區域之統計特性,此特性可將影像之空間相關性
考慮進去。由實驗中驗證,相較於非線性濾波器在處理非高斯(Gaussian)
雜訊之效果,此法很明顯的可得較佳的效果。但是由於考慮的視窗太小,
使得其處理的效果顯得太過區域性,換言之,若考慮較大的視窗,則選擇
的cliques結構太多且過於複雜,造成計算量太大。 因此一個利用方向性
之限制的Gibbs/MRF (Gibbs Markov Random Field) model將被提出來做
影像加強(Image Enhancement)。此法將改進先前之Gibbs/MRF在龐大計算
量上之缺點,利用影像特徵之方向性來選擇在Gibbs/MRF模型中影響較大
之cliques,而排除其他的cliques以減少計算量。 我們將利用影像特徵(
如邊、線)之方向性選取部份影響較大之cliques放入Gibbs/MRF之模型中
去。如此我們不但可以增加視窗大小(window size),以便使濾波器(
filter)能夠更正確的捉取空間的特性而且不至增加其計算量。其結果將
由一些影像處理之實驗來驗證。

During the last few years, the nonlinear filter has been the
dominating filter class for removing the non-Gaussian noise.
The success of nonlinear filters isbased on two intrinsic
properties : edge preservation and effective noise attenuation
with robustness against impulse noise. However, it may cause
edge jitters, streaking and may remove important image details.
The main reasons is that the nonlinear filter use only rank-
order information of the input data within the filter window,
and discards the signal spatial-order information. In order to
utilize both rank- and spatial-order information of the input
data, several classes of nonlinear filter has been proposed.
Recently, Gibbs/MRF model has been widely used to model the
local statistics of images and proven to be a useful approach
for some image applications. The image enhancement technique,
introduced by Park and Kurz, utilize Gibbs/MRF model to
incorporate the spatial-order information in the filter
operation in order to reduce the noise effect of the image.
Compare with the conventional nonlinear filter, a better
performance for reducing the non-Gaussian noise of this approach
has been illustrated by some experimental results. However, due
to it*s computational complexity, it is difficult to enlarge the
filter*s window size in order to extract more spatial
information of the image data. In this research, we develop a
constrained Gibbs Markov Random Field (Gibbs/MRF) model for the
image processing. This approach utilizes the directional
constraint to choose more influential cliques for the Gibbs/MRF
model. In this way, we can not only reduce the computational
complexity, but also increase the window size of the filter. We
utilize the directional characteristic of the image feature to
include more influence cliques, and exclude the other cliques
for the Gibbs/MRF mode. By reducing the number of clique in the
Gibbs/GMF model, we can enlarge the window to acquire more
spatial-order information of the image without increasing the
computational complexity. The experimental results of proposed
method will also indicated in this thesis.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top