(3.239.33.139) 您好!臺灣時間:2021/03/08 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳曉蕙
研究生(外文):Hsiao-Huai Chen
論文名稱:FAK和Src在人類乳癌細胞中功能上的研究
論文名稱(外文):Functional studies of FAK and Src in human breast cancer celll lines
指導教授:呂增宏
指導教授(外文):Tzeng-Horng Leu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
中文關鍵詞:酪胺酸磷酸化乳癌酵素活性
外文關鍵詞:tyrosyl phosphorylationbreast cancerkinase activityFAKSrc
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
酪胺酸的磷酸化在細胞生長、分化及計畫性細胞死亡的調控上都扮演著重要的角色
。因此,當這些酪胺酸激蛋白質表現量異常或是發生突變而導致其本身活化時,便可
能擾亂細胞生長的調控,甚至與腫瘤的形成有關。
Src與FAK是兩個可以互相產生分子間作用的非接受體型酪胺酸激西每,而其分子量
分別為60 kDa及125 kDa。活化態的Src已被證實可以與FAK產生結合,並進而導致FAK的
活化。先前學者在生理功能的研究上,已發現Src與FAK可能參與在生長因子對細胞生長
的調控上,以及integrin所引發的訊息傳遞,而與細胞的延展、運動及存活都有關係。
由於我們實驗室很有興趣研究這些酪胺酸激與人類乳癌的致癌機轉間是否存有任
何關連,因此我們利用實驗室擁有的人類乳癌細胞株作為研究題材。初步觀察結果顯示
乳癌細胞株中,許多的酪胺酸蛋白質都呈現高度的磷酸化;似乎顯示在人類乳癌細胞株
中,這些酪胺酸激的酵素活性可能經由某些機轉而有提昇的現象。在接下來的實驗中
,我們也觀察到某些與致癌機轉相關的酪胺酸激亦具有過量表現的情形,例如:HER-2
/neu、FAK和Src等蛋白質。有趣的是一些Src的受質:如Shc及eps8等蛋白質在乳癌細胞株
中亦有過量表現的情形。若同時以in vitro的方式檢視FAK和Src的酵素活性,我們發現在
多數乳癌細胞株中,FAK與Src的酪胺酸激活性均有提昇的情形。此外,多數乳癌細胞
也具有較高的生長速率;同時所有乳癌細胞株皆具有在軟洋菜膠中生長的能力,顯示著
它們已經喪失一般正常細胞所具有的附著生長特性。綜合上述所觀察到的現象,我們推
測Src可能透過Shc及eps8參與了一些生長因子對於細胞生長的調控。
Tyrosyl phosphorylation is an important event in regulating cellular growth, differentiation, and
apoptosis. The aberrant expression or mutation of the protein tyrosine kinase(s) that leads to their
activation usually causes the perturbation of growth regulation control and even tumor formation.
Pp60Src(Src) and pp125FAK (FAK : focal adhesion kinase) are two interacted cytoplasmic
tyrosine kinases. Active Src has been shown to associate with FAK and cause its activation.
Previous biological studies indicated that both Src and FAK were involved in growth
factor-induced mitogenesis and in integrin signaling pathway which led to cell spreading, motility
and survival.
Our laboratory is interested in studying the relationship between tyrosine kinases and the
oncogenesis of breast cancer, which is one of the prevalent tumors among women. To accomplish
this, a series of human breast cancer cell lines were utilized as our studying materials. Many
proteins in these cancer cell lines were observed to be highly tyrosine phosphorylated in our
preliminary data, indicating the activation of the tyrosine kinases. Among the known oncoproteins
analyzed, the protein level of HER-2/neu, FAK and Src were overexpressed in most cancer cell
lines, and so were the putative Src substrates such as Shc and eps8. In vitro kinase assay also
shown that the catalytic activities of FAK and Src were enhanced. Further studies of these cancer
cell lines revealed that not only their growth rate is high, but also their anchorage dependence is
lost compared to normal cell line. Therefore, we hypothesize that Shc and eps8 may participate in
Src signaling pathway.
頁數
中文摘要 1
英文摘要 4
縮寫檢索表 7
第一章 緒論 10
第二章 研究方法與實驗材料 20
第一節 實驗材料 21
第二節 實驗材料 26
第三章 實驗結果 44
第四章 討論 54
圖表 60
參考文獻 77
Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F. and Pawson. T. (1990). Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250, 979-982.
Brown, M. T. and Copper, J. A. (1996). Regulation, substrates and functions of src. Biochem. et Biophys. Acta 1287, 121-149.
Burridge, K., Turner, C. E. and Romer, L. H. (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell. Biol. 119, 893-903.
Calalb, M. B, Polte, T. R. and Hanks, S. K. (1995). Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src-family kinases. Mol. Cell. Biol. 15, 954-963.
Calalb, M. B, Ahang, X., Polte, T. R. and Hanks, S. K. (1996). Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem. Biophys. Res. Commu. 228, 662-668.
Cantley, L. C. and Songyang, Z. (1994). Specificity in recognition of phosphopeptides by src-homology 2 domains. J. Cell Sci. (Suppl.) 18, 121-126.
Carpenter, C. L. and Cantley, L. C. (1996). Phosphoinositide kinases. Curr. Opin. Cell. Biol. 8, 153-158.
Cartwright, C. A., Kaplan, P. L., Cooper, J. A., Hunter, T. and Eckhart, W. (1986). Altered sites of pp60Src tyrosine phosphorylation in associated with polyomavirus middle tumor antigen. Mol. Cell. Biol. 6, 1562-1570.
Cartwright, C. A., Eckhart, W., Simon, S. and Kaplan, P. L. (1987). Cell transformation by pp60Src mutated in the carboxyl-terminal regulatory domain. Cell 49, 83-91.
Chen, H. C. and Guan, J. L. (1994). Stimulation of phosphatidylinositol 3*-kinase associated with focal adhesion kinase by platelet-derived growth factor. J. Biol. Chem. 269, 31229-31233.
Chen, H. C., Appeddu, P. A., Parson, J. T., Hilsebrand, F. D., Schaller, M. D. and Guan, J. T. (1995). Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem. 270, 16995-16999.
Cheng, S. H., Markland, W., Markham, A. F. and Smith, A. E. (1986). Mutation around the NG59 lesion indicate an active association of polyoma middle-T antigen with pp60c-Src is required for cell transformation. EMBO J. 5, 325-334.
Cobb, B. S., Schaller, M. D., Leu, T. H. and Parsons, J. T. (1994). Stable association of pp60Src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol. Cell. Biol. 14, 147-155.
Collett, M. S. and Erikson, R. L. (1978). Protein kinase activity associated with the avian sarcoma virus src gene product Proc. Natl. Acad. Sci. USA. 75, 2021-2024.
Cotton, P. C. and Brugge. J. S. (1983). Neural tissues express high levels of the cellular src gene product pp60Src. Mol. Cell. Biol. 3, 1157-1162.
Courtneidge, S. A., Levinson, A. D. and Bishop, M. J. (1980). The protein encoded by the transforming gene of avian sarcoma virus pp60src and a homologous protein pp60proto-srcin normal cells are associated with the plasma membrane. Proc. Natl. Acad. Sci. USA. 77, 3783-3787.
Courtneidge, S. A. (1985). Activation of the pp60c-Src kinase by middle T antigen binding or by dephosphorylation. EMBO J. 4, 1471-1477.
Craig, S. W. and Johnson, R. P. (1996). Assembly of focal adhesions: progress, paradigms, and portents. Curr. Opin. Cell. Biol. 8, 74-85.
David-Pfeuty, T. and Nouvian-Dooghe, Y. (1990). Immunolocalization of the cellular src protein in interphase and mitotic NIH c-src overexpression cells. J. Cell. Biol. 111, 3097-3116.
Dobes, C. and Hall, A. (1994). Regulation and function of the Rho subfamily of small GTPases. Curr. Opin. Genet. Dev. 4, 77-81.
Downward, J. (1994). The GRB2/Sem-5 adapter protein. FEBS Lett. 338, 113-117.
Eide, B. L., Turck, C. W. and Escobedo, J. A. (1995). Identification of Tyr-397 as the primary site of tyrosine phosphorylation and pp60src association in the focal adhesion kinase, pp125FAK. Mol. Cell. Biol. 15, 2819-2827.
Ely, C. M., Tomiak, W. M., Allen, C. M., Thomas, G. and Parsons, S. J. (1994). pp60c-src enhances the acetylcholine receptor-dependent catecholamine release in virus-infected bovine adrenal chromaffin cells. J. Neurochem. 62, 923-933.
Fincham, V., Wyke, J. and Frame, M. (1995). v-Src-induced degradation of focal adhesion kinase during morphological transformation of chicken embryo fibroblasts. Oncogene 10, 2247-2252.
Frisch, S. M., Vuori, K., Ruoslahti, E. and Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell. Biol. 134, 793-799.
Gentry, L. E., Chaffin, K. E., Shoyab, M. and Purchio, A. F. (1986). Novel serine phosphorylation of pp60c-src in intact cells after tumor promoter treatment. Mol. Cell. Biol. 6, 735-738.
Ginsberg, M. H., Du, X. and Plow, E. F. (1992). Inside-out integrin signaling. Curr. Opin. Cell. Biol. 4, 766-771.
Gould, K. L. and Hunter, T. (1988). Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein-tyrosine kinase activity. Mol. Cell. Biol. 8, 3345-3356.
Gould, K. L., Woodgett, J. R., Cooper, J. L., Buss, J. E., Shalloway, D. and Hunter, T. (1985). Protein kinase C phosphorylatespp60src at a novel site. Cell 42, 849-857.
Guan, J. L. and Shalloway, D. (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690-692.
Hanks, S. K., Cakakb, M. B., Harper, M. C. and Patel, S. K. (1992). Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl. Acad. Sci. USA. 89, 8487-8491.
Hanks, S. K. and Polte, T. R. (1996). Signaling through focal adhesion kinase. BioEssays 19, 137-145.
Hardie, G. and Hanks, S., eds. (1995). The Protein Kinase Facts Book, Vol. II Academic Press, San Diego.
Hildebrand, J. D., Schaller, M. D. and Parsons, J. T. (1993). Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J. Cell. Biol. 123, 993-1005.
Hubbard, S. R., Wei, L., Ellis, L. and Hendrickson, W. A. (1994). Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372,746-754.
Hungerford, J. E., Compton, M. T., Matter, M. L., Hoffstrom, B. G. and Otey, C. A. (1996). Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J. Cell. Biol. 135, 1383-1390.
Ignelzi, M. A., Miller, D. R., Soriano, P. and Maness, P. F. (1994). Impaired neurite outgrowth of src-minus cerebella neurons on the cell adhesion molecule L1. Neuron. 12, 873-884.
Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., Yamamoto, T. and Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-544.
Kamps, M. P., Buss, J. E. and Sefton, B. M. (1986). Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation. Cell 45, 105-112.
Kaplan, K. B., Swedlow, J. R., Morgan, D. O. and Varmus, H. E. (1995). c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505-1517.
Krueger, J. G., Garber, E. A. and Goldberg, A. R. (1983). Subcellular localization of pp60src in RSV-transformed cells. Curr. Torics Microbiol. Immunol. 107, 52-124.
Kypta, R. M., Goldberg, Y., Ulug, E. T. and Courtneidge, S. A. (1990). Association between the PDGF receptor and members of the src family tyrosine kinases. Cell 62, 481-492.
Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E. and Bishop, J. M. (1978). Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15, 561-572.
Lewis, J. M., Cheresh, D. A. and Schwartz, M. A. (1996). Protein kinase C regulates avb5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J. Cell. Biol. 134, 1323-1332.
Maa, M. C., Wilson, L. K., Moyers, J. S., Vines, R. R., Parson, J. T. and Parson, S. T. (1992). Identification and characterization of a cytoskeleton-associated, epidermal growth factor-sensitive pp60c-src substrate. Oncogene. 7, 2429-2438.
Malik, R. K. and Parsons, J. T. (1996). Integrin-mediated signaling in normal and malignant cells: a role of protein tyrosine kinases. Biochem. et Biophys. Acta 1287, 73-76.
Maness, P. F. and Cox, M. E. (1992). Protein tyrosine kinases in nervous system development. Semin. Cell. Biol. 3, 117-126.
Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G. and Di Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol. Cell. Biol. 15, 3805-3812.
Mayer, B. J. and Eck, M. J. (1995). SH3 domains. Minding your p''s and q''s. Curr. Biol. 5, 364-367.
Mogi, A., Hatai, M., Soga, H., Takenoshita, S., Nagamachi, Y., Fujimoto, J., Yamamoto, T., Yokota, J. and Yaoi, Y. (1995). Possible role of protein kinase C in the regulation of intracellular stability of focal adhesion kinase in mouse 3T3 cells. FEBS Letters 373, 135-140.
Moran, M. F., Koch, C. A., Anderson, D., Ellis, C., England, L., Maryin, G. S. and Pawson, T. (1990). Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA. 87, 8622-8626.
Oddie, K. M., Litz, J. S., Balserak, J. C., Payyne, D. M., Creutz, C. E. and Parsons, S. J. (1989). Modulation of pp60c-src tyrosine kinase activity during secretion in stimulated bovine adrenal chromaffin cells. J. Neurosci. Res. 24, 38-48.
Owens, L. V., Xu, L., Craven, R. J., Dent, G. A., Weiner, T. M., Kornberg, L., Liu, E. T. and Cance, W. C. (1995). Overexpression of the focal adhesion kinase(p125FAK) in invasive human tumors. Cancer research. 55, 2752-2755.
Parsons, J. T. and Weber, M. J. (1989). Genetic of src: structure and functional organization of a tyrosine protein kinase. Curr. Top. Microbiol. Immunol. 147, 79-127.
Parsons, J. T., Schaller, M. D., Hildebrand, J., Leu, T. Z., Richardson, A. and Otey, C. (1994). Focal adhesion kinase: structure and signaling. J. Cell Sci. (Suppl.) 18, 109-113.
Piwnica-Worms, H., Saunders, K. B., Robert, T. M., Smith, A. E. and Cheng, S. H. (1987). Tyrosine phosphorylation regulates the biochemical and biological properties of pp60src. Cell 49, 75-82.
Polte, T. R. and Hanks, S. K. (1995). Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substratep130Cas. Proc. Natl. Acad. Sci. USA.. 92, 10678-10682.
Ralston, R. and Bishop, J. M. (1985). The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 82, 7845-7849.
Richardson, A. and Parsons, J. T. (1995). Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 17, 229-236.
Richardson, A. and Parsons, J. T. (1996). A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK.Nature 380, 538-540.
Rosen, M. K., Yamazaki, T., Gish, G. D., Kay, C. M., Pawson, T. and Kay, L. E. (1995). Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature 374, 477-479.
Rozakis-Adcock, M., McGlade. J., Mbamalu, G., Pelicci, G., Daly, R., Li, W., Batzer, A., Thomas, S., Brugge, J., Pelicci, P. G. et al. (1992). Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360, 689-692.
Salcini, A. E., McGlade, J., Pelicci, G., Nicoletti, I., Pawson, T. and Pelicci, P. G. (1994). Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 9, 2827-2836.
Schaller, M. D., Borgman, C. A. and Parsons, J. T. (1993). Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol. Cell. Biol. 13, 785-791.
Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R. and Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60Src. Mol. Cell. Biol. 14, 1680-1688.
Schaller, M. D., Otey, C. A., Hilderbrand, J. D. and Parsons, J. T. (1995). Focal adhesion kinase and paxillin bind to peptides mimicking b integrin cytoplasmic domains. J. Cell. Biol. 130, 1181-1187.
Schaller, M. D. and Parsons, J. T. (1994). Focal adhesion kinase protein and associated proteins. Curr. Opin. Cell. Biol. 6, 705-710.
Schlaepfer, D. D., Hanks, S. K., Hunter, T. and Ceer, P. v. d. (1994). Integrin-mediated signal transduction linked to Ras pathway by Grb2 binding to focal adhesion kinase. Nature 372, 786-791.
Schlaepfer, D. D. and Hunter, T. (1996). Evidence for the in vivo phosphorylation of the Grb2 SH2 binding site on the focal adhesion kinase(FAK) by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623-5633.
Schlaepfer, D. D. and Hunter, T. (1997). Focal adhesion kinase overexpression enhances Ras-depedent integrin signaling to ERK2/Mitogen-activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272, 13189-13195.
Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A. and Press, M. F. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707-712.
Smart, J. E., Oppermann, H., Czernilofsky, A. P., Purchio, A. F., Erikson, R. L. and Bishop, J. M. (1981). Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc. Natl. Acad. Sci. USA. 78, 6013-6017.
Soriano, P., Montgomery, C., Geske, R. and Bradley, A. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693-702.
Tachibana, K., Sato, T., D*Avirro, N. and Morimoto, C. (1995). Direct association pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J. Exp. Med. 182, 1089-1100.
Tamura, T., Friis, R. R. and Bauer, H. (1984). pp60c-src is a substrate for phosphorylation when cells are stimulated to enter cycle. FEBS Lett. 177, 151-156.
Thomas, J. W., Ellis, B., Boerner, R. J., Knight, W. B., White II, G. C. and Schaller, M. D. (1998). SH2- and SH3-mediated interactions between focal adhesion kinase and Src. J. Biol. Chem. 273, 577-583.
Vouri, K. and Rouslahit, E. (1993). Activation of protein kinase C precedes a5b1 integrin-mediated cell spreading on fibronectin. J. Biol. Chem. 268, 21459-21462.
Weiner, T. M., Liu, E. T. and Craven, W. G. (1993). Expression of focal adhesion kinase gene and invasive cancer. Lancet 342, 1024-1025.
Wilson, L. K. and Parsons, S. J. (1990). Enhanced EGF mitogenic response is associated with enhanced tyrosine phosphorylation of specific cellular proteins in fibroblasts overexpressing c-src. Oncogene. 5,1471-1480.
Xie, Y. and Heng, M. C. (1996). pp66Shc isoform down-regulated and not required for HER-2/neu signaling pathway in human breast cancer cell lines with HER-2/neu overexpression. Biochem. Biophys. Res. Commu. 221, 140-145.
Yamada, K. M. and Miyamoto, S. (1994). Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell. Biol. 7, 681-689.
Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. and Schreiber, S. L. (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933-945.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔