(3.235.108.188) 您好!臺灣時間:2021/03/07 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方國琨
研究生(外文):Fang, Kuo-Kuen
論文名稱:一百八十度彎道河床變動之試驗及計算分析
論文名稱(外文):Experiment and calculation of bed evolution in a 180o channel bend
指導教授:賴泉基, 呂珍謀
指導教授(外文):Lai Chan-Ji, Leu Jan-Mou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:64
中文關鍵詞:底床橫向坡度沖淤平衡彎道動床二維底床沖淤模式
外文關鍵詞:transverse bed slopesteady statealluvial channel bend2-D alluvial model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文採用實驗與數值方法,探討水流於彎道動床沖淤平衡後床形於彎
道各處砂面之橫向剖面、縱向剖面以及橫向坡度於縱向上之變化,並與
Odgaard (1981)之彎道橫向坡度計算公式做比較。實驗於成功大學水利及
海洋工程學系一樓雷射實驗室20公分寬之180 度彎道循環水槽中進行,待
彎道底床受水流作用至底床沖淤平衡時,沿彎道縱向上每隔10度量測底床
之高程,分析得底床坡度。另外亦運用二維紊流計算模式DIM-2U,模擬床
形變化並以實驗結果互為比對。

由本文之實驗結果得知,於彎道20度前,底床沖淤變動小,於彎道30度後
底床之橫向剖面才有明顯之改變 ; 由彎道各處之砂面沖淤縱向剖面圖中
可看出距右岸15公分 (b/B=0.75)及10公分公分(b/B=0.5)處,即彎
道內岸及中心處,於彎道50度至120度間底床呈下游高於上游逐漸淤積型
態,最高淤至+0.6h(h為上游均勻流水深), 彎道內岸區120度至160度間
則呈淤積量漸減之趨勢;距右岸5公分處(b/B=0.25),即外岸區,於彎
道30度至50度間底床沖刷呈向下游逐漸刷深之型態,最深刷至 -0.9h~1.7
h , 50度至100度間刷深量漸小,100度至180度間刷深量又由0.2h~0.5h
刷深至-1.0h。 Odgaard(1984)之公
式所得之結果與實驗所得相近,顯示應用Odgaard(1984)之公式以預測
底床橫向坡度有不錯之結果。

由本文中探討得知,二維之底床沖淤模式如DIM-2U,均需考慮橫向坡度及
其對橫向輸砂之影響,才可對180度彎道動床之模擬得到較佳之結果。


Bed configuration in a 180 alluvial channel bend at
steady statecondition was studied experimentally and
numerically. The experimentswere conducted in a 20cm wide
glass channel. Elevations of the channelbed at steady state
were measured transversely at cross-sections of thebend in
interval. Topography as well as the longitudinal,
transverseslopes were obtained from the measured data.

It is observed from the bed configuration that the bed
variation in achannel bend could be divided
longitudinally into five regions andtransversely into two
regions. Transversely, the two regions are the innerbank and
the outer bank regions. Bed material tends to be eroded from
theouter bank region and deposited at the
inner bank region.Longitudinally, the five regions
are the entrance(0~20),front(20~50), mid(50~100),
rear(100~135) and the exit(135~180)regions. At the
entrance, bed is keeping flat and at the front region, thebed
at inner bank deposits increasingly from 20~35
and thendecreasingly from 35~50 ; the bed at outer
bank however graduallyerodes and reaches the deepest
erosion point at 50. This erosion couldreach -1.5 water
depth. At the mid region, bed elevations at both innerand
outer banks rise and are higher than those at 50. The
highest pointsare at 120 at the inner and at 100 at the outer
banks. At the rear region,bed elevations at both inner
and outer banks decrease and reach thesecond largest
erosion hole, -1.0h at 140 . The erosion and
depositionpatterns at the exit region are not consistent due
to upstream influences. Further analysis show that
Odgaard's (1984) formula describes thetransverse slope at
the channel bend reasonably well. A 2-D alluvialmodel
like DIM-2U should consider the mechanism of the
transverse bedslope and it's effect on the transverse
sediment transport, such that thebed evolution in a
alluvial channel bend can be simulated.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔