跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/05 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻如
研究生(外文):Chen, Yun-Ru
論文名稱:無母數分配中心點已知條件下之對稱型分位數及截斷變異數
論文名稱(外文):Estiamtion of Quantile and Trimmed Variance by the Symmetric Quantile When the Center of Distribution is known
指導教授:陳鄰安陳鄰安引用關係
指導教授(外文):Chen Lin-An
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計學類
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:12
中文關鍵詞:分位數對稱型分位數截斷變異數變異數
外文關鍵詞:QuantileSymmetric QuantileTrimmed VarianceVariance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
With the assumption of known the center of the distribution of a
random variable, we study the estimation of population quantile
and a trimmed population variance. For estimating the population
quantile function for the symmetric location model, we show that
the sample symmetric quantile is asymptotically more efficient
in the sense of smaller asymptotic variance and then shorter
confidence interval than those by the ordinary sample quantile.
For estimation of the trimmed variance, we compare the sample
trimmed variance constructed by ordinary quantiles and the
symmetric type sample trimmed variance. Although these two
estimators are asymptotically equivalent in distribution,
however, a small sample Monte Carlo comparison shows that the
latter one is relatively more efficient than the former one in
terms of mean squares errors.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top