|
本論文的研究重點在於國語連續語音辨認的語者調適和正規化技術.在語 者調適方面:對於每一位測試語者,以MLLR技術估計出其轉換矩陣,以調適 現有之不特定語者模型為最適合該測試語者之HMM模型.實驗結果顯示調適 後的辨認率較基本系統升高許多,而且隨著調適語料的增加,辨認率隨之而 遞增.在語者正規化方面:我們以MLLR技術所衍生出的三種方法達到語者正 規化的目的.方法一:訓練語者的特徵參數直接扣除由MLLR技術所估計出的 語者偏移量後重估HMM模型;方法二:訓練語者的特徵參數經由調適後的平 均值向量圓滑化後重估HMM模型;方法三:以MLLR技術對每一位訓練語者的 特徵參數估計出一轉換矩陣,特徵參數經轉換後重估HMM模型.實驗結果顯 示,由方法二所估計出的語者正規化模型最精確.其辨認率為62.62%比 SBR(54.91%)和CMN(56.96%)法的辨認率都高.
|