跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃升佑
研究生(外文):Huang, Sheng-You
論文名稱:利用隱藏馬可夫模型作病歷表之手寫文書辨識
指導教授:范國清范國清引用關係
指導教授(外文):Fan, Guo-Qing
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:英文
中文關鍵詞:隱藏馬可夫模型手寫文書辨識
外文關鍵詞:hidden Markov modelHMM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

In this thesis, a HMM based approach is presented to recognize the handw
ritten words of mcdical record. The proposed approach is based on the us
ing of generating a loose segmentation of a word image into a state sequ
ence and to match the sequence to a lexicon of candidate strings by a si
ngle hidden Markov model (HMM). A HMM is a doubly stochastic proccss wit
h an underlying stochastic process that is not observable, but can only
be observed through another set of stochastic processes that produce the
observable sequence of symbols. It has the advantages that it does not r
equire segmentation of word into characters and is quick to be trained.O
nce the model is established, the recognition algorithm, known as Viterb
i algorithm, iscmployed to recognize a best optimal state sequence in th
e lexicon. If not, we use the hypothesis generation scheme to find the h
ighest probability word in the lexicon. Experimental results reveal the
feasibility and efficiency of the proposed approach in recognizing handw
ritten words of medical records.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top