跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何文欽
研究生(外文):He, Wen-Qin
論文名稱:加權節點選配法之理論分析與數值模擬
論文名稱(外文):A Study of the Weighted Nodal Fitting Method
指導教授:盛若磐盛若磐引用關係王仲宇
指導教授(外文):Sheng, Ruo-PanWang, Zhong-Yu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:66
中文關鍵詞:關聯性加權節點選配法有限元素法關聯條件土木工程工程
外文關鍵詞:InterpolationConnectivityWeighted nodal fittingFinite elment methodconnectivityweighted nodal fitting methodfinite elementCIVIL-ENGINEERINGENGINEERING
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, a new numerical method, which is very similar to
the conventional finite element method, is presented. The
displacement field within each deformable body is approximated
by a so-called "weighted nodal fitting method"(WNFM). This WNF
method has a more general mathematical background than the
conventional finite element method. The release of connectivity
requirements among nodal points and elements makes this WNF
method have a more flexible numerical data structure in its pre-
and post-processing schemes. The total potential energy of the
system is calculated by integrating the potential of each
independent cellular within the domain. The potential is
calculated by the corresponding approximation functions provided
by the WNF scheme. Formulations of the WNF method using
complete or partial quadratic polynomial base function are
presented first. Then, properties of the weighting function and
schemes of nodal point selections are discussed in detail. In
this WNF method, continuous and smooth displacement and stress
fields in the entire domain can be constructed to study problems
with local stress concentration effect or high stress
distribution gradient. The accuracy and efficiency of this new
method are evaluated by some numerical benchmark problems.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊