跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴金輪
研究生(外文):Lai, Chin-Lun
論文名稱:廣義數理形態學在影像濾波器、物件偵測及路徑導引上之應用
論文名稱(外文):Applications of the Generalized Morphology in Image Filtering, Object Detection, and Path Planning
指導教授:貝蘇章---
指導教授(外文):Pei Soo-Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:英文
論文頁數:172
中文關鍵詞:數理形態學廣義數理形態學形態濾波器方向性形態學路徑導引物件偵測
外文關鍵詞:MorphologyGeneralized MorphologyMorphological FilteringDirectional MorphologyMotion PlanningTarget Detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
數理形態學已被廣泛地應用在各種學術領域中做為信號處
理的工具。這些領域涵蓋了電機、生物、地理、農業、語
文、醫學及化學等學科、以及軍事、製造業上的各種影像
系統等。 在本論文中,為了克服因傳統數理形態學的定義
所造成的使用限制,我們提出了廣義數理形態學的概念以
強化數理形態運算元的功能。並將之分別應用於三個主題
單元上。在第一個主題中,我們討論了廣義形態濾波器的
分析及設計。我們提出了次序統計軟性形態濾波器及遞迴
式次序統計軟性形態濾波器的架構來增進在雜訊環境中的
信號回復能力,並由實驗證明出此種濾波器較之其它的傳
統濾波器在雜訊消除及邊緣保留上的效果更好。同時,藉
由此種彈性化濾波器架構的特性,我們亦發展出多種的影
像處理的新應用。此外,我們亦提出一種更有效率的交替
序列濾波器架構來替代先前的原始架構,以減低在原架構
中約一半的巨量運算數,同時保有相近的影像處理結果。

在第二部分中,我們將廣義的數理形態學應用於電腦
視覺中,並提出二種不同的演算法來解答無人搬運車的路
徑導引問題。藉由此種平行且簡單的架構,一個允許旋轉、
前進及後退運動的真實導引系統可以實現,使一任意形狀
的機器人能在充滿障礙物的環境找出捷徑而毫無阻攔的
行走。比起先前的系統,我們能更快速的解決更複雜、更
近似於真實環境的問題,故所受的硬體限制也更少。

此外,在第三個主題中,我們則提出一個使用動態結
構單元為模版比對的物件偵測演算法,以找出在含有複雜
背景的投射平面上,形狀失真的標地物。此種系統對於在
影像處理的過程中所造成的失真,亦具有偵測的能力。我
們並藉由實驗證明可將之成功的應用於真實的影像系統
上。
The mathematical morphology have been widely used for signal
processing in various field including biology,
geography, linguistics, military, chemistry, agriculture,
manufacturing, medical, and so
on. Due to the reason of lacking flexibility in conventional
morphology, concept of the generalized
morphology is introduced to enhance the morphological operations.
In this dissertation, three topics of the generalized
morphology and their applications
are presented. The first topic concerns the morphological filtering.
Two newly defined morphological filters, order statistic soft
morphological and recursive order statistic soft morphological
filters,
are proposed for better signal reconstruction from noisy
environment. These new filters are proved through
the experimental results to be better in noise reduction and
edge preservation than other conventional filters.
Moreover, by the help of the flexibility of these filter''s
structure, new image applications
can be developed. On the other hand, an efficient class of
alternating sequential filters (ASF) in morphology is
developed to reduce half of the
huge computational complexity residue in the original ASF
structure while maintaining comparable filtering performance.

In the second part, we are interested in the motion planning
problems in computer
vision. Two morphological approaches that offer the shortest paths
for moving objects of arbitrary shape allowing rotation and
forward/backward movement are proposed.
The parallel and simple architecture of the proposed
morphological algorithms not only make a
feasible and tractable system but also allow to solve more
complex/realistic problems whose models
are less limited to the realistic hardware.

The third part concerns the topic of pattern recognition. An
effect target detection algorithm is
proposed and proved that it can be applied to the real imaging
systems to detect the desired objects on distorted perspective
plane from
cluttered background by using the dynamic-varying structuring
elements matching. Moreover, the proposed algorithm
is shown to have ability in detecting the distortion resulted
by the processing process.
Cover
Contents
Chapter 1 Introduction
1.1 Introduction to the Mathematical Morphology
1.2 Overview of the Dissertation
1.3 The Contributions of the Dissertation
Chapter 2 Order Statistic Soft Morphological Filters
2.1 Introduction
2.2 Preliminary: Standard and Soft Morphological Filters
2.3 The Order Statistic Soft Morphological Filters
2.4 Properties of the OSSM Filters and Relationship between Other Nonliuear Filters
2.5 Experimental Results and Discussions
2.6 Conclasions
Chapter 3 Recursive Order Statistic Soft Morphological Filters
3.1 Introduction
3.2 Preliminary: Recursive Soft Morphological Filters and Order Statistic Soft Morphological Filters
3.3 Recursive Order Statistic Soft Morphological Filters
3.4 Properties of the ROSSM Filters
3.5 Experimental Results and Discussions
3.6 Conclusions
Chapter 4 Efficient Class of Alternating Sequential Filters
4.1 Introduction
4.2 Preliminary: Alternating Sequential Filters
4.3 The New Class of ASFs
4.4 Properties of the New Class ASFs
4.5 Experimental Results and Discussion
4.6 Conclasions
Chapter 5 Image analysis: Motion Planning for Rotation Objects by Morphology
5.1 Introduction
5.2 Relationships Between Motion Planning and Mathematical Morphology
5.3 Ratational Mathematical Morphology
5.4 The Shortest Path Planning Algorithm
5.5 Experimintal Results and Discussions
5.6 Conclusions
Chapter 6 Forward and Backward Motion Planing for Vehicles
6.1 Introduction
6.2 Preliminary: Motion Planning by Rotational Morphlolgy
6.3 The Mfodified Morphological Distance Transformation
6.4 The Proposed Motion Planning Algorithm
6.5 Experimental Results and Discussions
6.6 Conclusions
Chapter 7 Targer Detecton on Perspective Plane by Morphology
7.1 Introduction
7.2 Mathematical Morphlolgy in Targer Detection
7.3 The 3-D Perspective Transformation
7.4 The Proposed Target Detection Algorithm
7.5 Experimental Results and Discussions
7.6 Conclusions
Chapter 8 Conclusions and Future Works
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top