跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李美銀
研究生(外文):Mei-Yin Lee
論文名稱:Au/TiO2觸媒催化NO+CO反應特性研究
指導教授:林昇佃
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:86
語文別:中文
論文頁數:110
中文關鍵詞:Au/TiO2觸媒NO+CO反應含浸法沈澱法HTR/C/LTR還原CO/H2O(g)還原表面紅外光譜分析
相關次數:
  • 被引用被引用:6
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在討論不同製備方法製得Au/TiO2觸媒催化NO+CO反應特性研究。以含浸法製得觸媒經120℃烘箱乾燥(DO)後以HTR/C/LTR-II還原所得活性較佳,粗略估計其催化NO→N2O之活化能(Ea)為-5.0Kcal/mole,而催化NO→N2之活化能Ea則約為1.7Kcal/mole;含浸法觸媒經室溫抽真空乾燥(DR)後則是以CO/H2O(g)還原較HTR/C/LTR還原條件來得好,且從323K-623K都是以N2為主產物。即使進料只通入NO,發現仍有明顯NO分解反應活性。而以HAuCl4為precursor製得Au/TiO2所得反應活性均沒有以AuCl3為precursor來得好。
以沈澱法製備過程而言,TiO2擔體懸浮液pH值愈高所得反應活性愈好而以NaOH調整pH值的活性也優於NH4OH,實驗發現以pH=11.4(NaOH)經CO/H2O(g)還原所得反應活性為最佳,其催化NO→N2O之活化能(Ea)為-3.1Kcal/mole ,NO→N2之活化能Ea約為2.4 Kcal/ mole,且測得對NO的反應級數約為1級。
表面紅外光譜分析(DRIFTS)方面,在323K時,通入CO ,在2186cm-1可見一吸收峰為CO在TiO2的訊號,而在2120cm-1有一CO在Au上的訊號。而通入NO時,則以NO吸附在TiO2的訊號為主。而含浸法Au/TiO2 (HTR/C/LTR-II)在323K下通入CO時,比Au/TiO2(HTR/C/LTR-I)在1820cm-1多了一吸收峰,只通入NO時也多了2167cm-1此訊號,這些額外訊號的形成有可能是造成這兩種含浸法Au/TiO2經HTR/C/LTR觸媒在323-523K範圍內不同NO+CO反應選擇性的主要原因。
The NO+CO reaction was studies over Au/TiO2 catalysts prepared by either the impregnation or the deposition method. The drying conditions and pretreatment conditions were found to affect the reactivity. The prepration parameters such as pH value the type of alkaline also effected the reactivity of those prepared by the deposition method.
For catalysts prepared by the impregnation method, the incipiently wet powders were dried either in a 393K oven (DO) or under vacuum at 298K (DR) .For the DO sample, a pretreatment sequence of high temperature reduction/calcination low temperature reduction (HTR/C/LTR) showed the best activity. The NO to N2 activation energy was —5.0 Kcal/mole and the NO to N2O activation energy was 1.7Kcal/mole. For the DR sample, a reduction by CO/H2O(g) at 343K had the highest NO reduction activty. The most active Au/TiO2(DR,CO/H2O(g)) produced mainly N2 whereas the others involved the production of N2O. At 323K, this sample yields N2 at a selectivity of 100%. HAuCl4/TiO2 prepared by the impregnation method was found to have lower activities than corresponding AuCl3/TiO2 catalysts.
For the deposition method, the activity increased with the increasing pH of TiO2 solution. A catalyst prepared at pH=11.4 (adjusted by NaOH) had the highest NO reduction activity after a reduction by CO/H2O (g) at 343K.
Analyses with Diffuse Reflectance Infrared-Fourier Transform Spectroscopy (DRIFTS) showed various CO and NO absorbance features over these Au catalysts. A slight change in the HTR/C/LTR pretreatment caused somewhat different reaction selectivity and different IR absorbance band.
中文摘要I
AbstractII
第一章 緒論1
1.1 前言1
1.2 文獻回顧1
1.3 研究目的與方法3
第二章 實驗方法14
2.1 材料及氣體14
2.2實驗裝置與儀器14
2.3觸媒的製備15
2.4觸媒的前處理17
2.5反應測試18
2.6金觸媒的活性數據分析方法18
2.7觸媒的特性分析20
2.8 表面紅外光譜分析步驟21
2.8.1設備與操作參數21
2.8.2實驗步驟21
2.8.3數據分析21
第三章結果與討論22
3.1含浸法製備Au/TiO2觸媒22
3.1.1 觸媒製備與前處理對反應活性的影響22
3.1.2 DRS的分析32
3.1.3 HR-TEM之分析35
3.1.3 XRD之分析39
3.2 沈澱法製備Au/TiO2觸媒39
3.2.1 觸媒製備與前處理對反應活性的影響41
3.2.2 DRS分析50
3.2.3 HR-TEM的分析50
3.2.4 XRD分析54
3.3 沈澱法與含浸法Au/TiO2的比較54
3.4觸媒表面的紅外光譜分析57
3.4.1 CO吸附的紅外光譜分析57
3.4.1.1 TiO257
3.4.1.2 含浸法Au/TiO2(AuCl3,DO)59
3.4.1.3 沈澱法Au/TiO2(AuCl3,DR,pH=9.6(NH4OH))63
3.4.1.4 各樣品的CO吸附圖比較67
3.4.2 NO吸附的紅外光譜分析67
3.4.2.1 TiO267
3.4.2.2 含浸法Au/TiO2(AuCl3,DO)71
3.4.2.3 沈澱法Au/TiO2(AuCl3,DR,pH=9.6(NH4OH))76
3.4.2.4 各樣品的NO吸附圖譜比較76
3.4.3 CO+NO 吸附的紅外光譜分析79
3.4.3.1 TiO279
3.4.3.2 含浸法Au/TiO2(AuCl3,DO)79
第四章 總結85
參考文獻86
附錄91
附錄A Diffuse Reflectance Infrared-Fourier Transform(DRIFT) Spectroscopy91
A.1系統測試91
A.2 CO+NO 吸附的紅外光譜分析99
A.2.1 TiO299
A.2.2含浸法Au/TiO2(AuCl3,DO)99
A.3.3沈澱法Au/TiO2(AuCl3,DO,pH=9.6(NH4OH))100
附錄B Au/γ-Al2O3觸媒之DRS-UV/Vible分析107
附錄c Au/γ-Al2O3觸媒之HR-TEM分析109
1.蘇彥碩,”金箔的吸附現象與Au/TiO2催化特性研究”,碩士論文,元智工學院(1996)
2.Kang Y. M. and B. Z. Wan, Catal. Today, 26, 59(1995)
3.Kang Y. M. and B. Z. Wan, Appl. Catal. A: General, 128, 53(1995)
4.Lin S. D., M. Bollinger, and M. A. Vannice, Catal. Lett., 17, 245 (1993)
5.Bollinger M.A., Vannice M.A. Appl. Catal. B: Environ., 8, 417-443(1996).
6.Haruta M., N. Yamada, T. Kobayashi, and S. Iijima, J. Catal., 115, 30(1989).
7.Haruta M., A. Ueda, S. Tsubota, T. Kobayashi, H. Sakurai, and M. Ando, Proc. 1st. Japan-EC Joint Workshop on the Frontiers of Catal. Sci. Techn., Dec. 1991, Tokyo, 173 (1991).
8.Haruta M., T. Takase, T. Kobayashi, and S. Tsubota, Catal Sci. Techn., 1, 331 (1991).
9.Haruta M., S.Tsubota, and T. Kobayashi, 3rd. Inter. DRA/NATA Confer. on Long-Life O2 Laser Techn., Nov. 1992, Ikeda, 72 (1992)
10.Haruta M., S. Tsubota, T. Tessuhiko, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal., 144, 175 (1993)
11.春田正毅 and 林利生, CATSJ Meeting Abstracts: No. 1B01, 37, 73 (1995)
12.Tsubota S., A. Ueda, H. Sakurai, T. Kobayashi, and M. Haruta, ACS Symposium Book Series, 552, chapter 34(1994)
13. Tsubota, S., Cunningham, D. A. H., Bando, Y., and Haruta, M., in "Preparation of Catalysts VI" (Poncelet, G. et al., Eds.), p.227, Elsevier, Amsterdam (1995).
14.Kung M. C., J. H. Lee, J. Brooks, and H. H. Kung, Preprint ACS Di. Fuel Chem., 40, 1073 (1995)
15.Qiu S., R. Ohnishi, and M. Ichikawa, J. Phy. Chem., 98, 2721(1994)
16.Qiu S., R. Ohnishi, and M. Ichikawa, J. Chem. Soc. Commun.,1425(1992)
17.Cant N. W., and P. W. Fredrickson, J. Catal., 37, 531 (1975)
18.Lee J. Y. and Schwank J., J. Catal., 102, 207 (1986)
19.林睦益,”金粉的吸附現象與金觸媒催化NO+CO反應特性研究”,碩士論文, 元智工學院(1997)
20.王逸銘,碩士論文, 元智大學(進行中)
21.Haruta M., Ueda A., Oshima T., Applied catalysis B:Environmental 12, 81-93(1997).
22.Edens, G.T., Gao, X ., Weaver, M.J., Markovic, N.M., and Ross, P.N.,Surf. Sci. Lett. 302, L275 (1994).
23.Knell, A., Barnickel, P., Baiker, A., and Wokaun, A., J. Catal. 137, 306 (1992).
24.Lane, G.S. and Wolf, E.E., J.Catal. 105, 386(1987).
25.Biccuzzi, F., Tsubota, S., and Hatuta, M., J. Electr. Spectrose. Relat. Phenom. 64/65, 241 (1993).
26.France, J. and Hollins, P., J. Electr. Spectrose. Relat. Phenom. 64/65, 251 (1993).
27.Yates, D.J.C., J. Colloid Interface Sci. 29, 194 (1969).
28.Tanaka, K. and White, J.M., J. Phys. Chem. 86, 4708 (1972).
29.Fernandez, A., Leyer, J., Gonzalez-Elipe, A.R., Munuera, G., and Knozinger, H., J. Catal. 112, 489 (1988).
30.Yates, D.J.C., J. Phys. Chem. 65, 746 (1961).
31.Morterra, C., Ghiotti, G., and Garrone, E., J.C.S. Faraday Trans. I 76, 2102 (1980).
32.Davydov, A.A. and Rochester, C.H. (ed.), “Infrared Spectroscopy on the Surface of Transition Metal Oxide”, John Wiley & Sons, Chinchester, (1984).
33.Primet, M., Pichat, P., and Mathieu, M.V., J. Phys. Chem. 75, 1221 (1971).
34.Busca, G., Lamotte, J., Lavalley, J.C., and Lorenzelli, V., J. Am. Chem. Soc. 109, 5197 (1987).
35.Jackson, P. and Parfitt, G.D., J.C.S. Faraday Trans. I 68, 896 (1972).
36.Matyshak V.A., Krylov O.V. Catalysis Today, 25, 1-88(1995).
37. Galvagno S., and G. Parravano, J. Catal., 55, 178 (1978)
38. Baes, C. F., Jr., and Mesmer, R. E., "The Hydrolysis of Cations", John Wiley & Sons, New York (1976).
39. Marsheneva, V. I., Slavinskaya, E. M., Kalinkina, O. V., Odegova, G. V., Moroz, E. M., Lavrova, G. V., and Salanov, A. N., J. Catal. 155, 171 (1995).
40. Fernandez, A., Leyrer, J., Gonzalez-Elipe, A. R., Munuera, G., and Knozinger H., J. Catal. 112, 489 (1988).
41. Rustad, D.S. and Gregory, N. W., Polyhedron 10, 633 (1991).
42. Mason, W.R. and Gray, H.B., Inorg. Chem. 7, 55 (1968).
43. Gangopadhayay, A. K. and Chkravorty, A., J. Chem. Phys. 35, 2206 (1961).
44. Clark, E. S. and Templeton, D. H., Acta. Cryst. 11, 284 (1958).
45. Salama, T. M., Shido, T., Ohnishi, R., and Ichikawa, M., J. Phys. Chem. 100, 3688 (1996).
46. Torigoe, K. and Esumi, K., Langmuir 8, 59 (1992).
47. Duff, D. G. and Baiker, A., in "Preparation of Catalysts VI" (Poncelet, G. et al., Eds.), p.505, Elsevier, Amsterdam (1995).
48.Schmid, G., Pfeil, R., Boese, R., Bandermann, F., Meyer, S., Calis, G. H. M., and van der Velden, W. A., Chem. Ber. 114, 3634 (1981).
49.紅外線光譜法在化學、生物和工業方面之應用, 初版 ,國立編譯館出版,(1996).
50.Solymosi F., Rasko J., Journal of catalysis 63, 217-225(1980).
51. Spoto G., Bordiga S., Scarano D., Zecchina A., Catalysis Letters 13 39-44(1992).
52. Busca G., Lorenzelli V., Journal of catalysis 72, 303-313(1981).
53. Davydov A. A., Bell A. T., Journal of catalysis 49, 345-355(1977).
54. Chao C., Lunsford J., Journal of Americal Chemical Society 93, 71-77(1971).
55.Brown M F., Gonzalez R. D., Journal of catalysis 44, 477-487(1976).
56.徐上惠,”以沈澱法製備Au/γ-Al2O3觸媒研究專題報告”,元智大學(1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top