|
參考文獻 【1】 Glass, I. I.,and Hall, J. G.,"Shock Tubes, Handbook of Supersonic Aerodynamics," NAVORD Report 1488, Vol. 6, Section 18. (1958) 【2】 Lukasiewicz, J.,"Shoch Tube Theory and Application, " National Aeronautical Establishment, Rept. 15, Ottawa, Canada. (1952) 【3】 Nagamatsu, H. T.,"Shock Tube Technology and Design, " Fundamental Data Obtained From a Shock-Tube Experiments,” Edited by A. Feri, pp. 86-136, Pergamon Press. (1961) 【4】 Bradley, J. N.,"Shock Waves in Chemistry and Physics, " Methuen & Co. (London), J. Wiley&Sons (New York). (1962) 【5】 Soloukhin, R. I.,"Shock Waves and Detonation in Gases, " State Publishing House of Physical-Mathematical Literature, Moscow; English Translation Published by Mono Book Corp., Baltimore. (1966) 【6】 Lester Lees,"Hypersonic Wakes and Trails,"AIAA Journal, Vol. 2, pp. 417-428 March (1964). 【7】 Victor Zakkay and Robert J. C.,"An Experimental Investigation of the Near Wake of a Slender Cone at M = 8 and 12,"AIAA Journal, Vol. 4, No. 1, pp. 41-46, January (1966) . 【8】 Muntz, E. P., and Softley, E. J., "A Study of Laminar Near Wakes, "AIAA Journal, Vol. 4, pp. 961-968, June (1966). 【9】 Murman, Earll. M.,"Experimental Studies of a Laminar Hypersonic Cone Wake, "AIAA Journal, Vol. 7, No.9, September (1969), pp. 1724-1730. 【10】 Cassanto, J. M., Schiff, J. and Softley, E. J.,"Base Pressure Measurements on Slender Cones with Domed Afterbodies, "AIAA Journal, Vol. 7, No. 8, pp. 1607-1609, August (1969). 【11】 Cassanto, J. M., and Rasmussen, N. S., and Coats, J. D., "Correlation of Free-Flight Base Pressure Data for M=4 to M=19,"AIAA Journal, Vol. 7, No. 6, pp. 1154-1157, June (1969). 【12】 Bulmer, B. M.,"Study of Base Pressure in Laminar Hypersonic Flow: Re-entry Flight Measurements, "AIAA Journal, Vol. 13, No. 10, pp. 1340-1348, Oct. (1975). 【13】 Dolling, D. S., and Gray, W. K.,"Experimental Study of Supersonic Turbulent Flow on a Blunted Axisymmetric Body, "AIAA Journal, Vol. 24, No. 5, pp. 793-799, May (1986). 【14】 J. C. Adams, Jr.,"Analysis of Three-Dimensional Compressible Turbulent Boundary Layer on a Sharp Cone at Incient Supersonic and Hypersonic Flow," AEDC-TR-72-66, June (1972). 【15】 Lawrence D. H., James L. P. and Arthur, D. D., "Hypersonic Parabolized Navier-Stokes Code Validation on a Sharp Nose Cone," Journal of Spacecraft, and Rockets, Vol. 26, No. 7, pp. 650-656, July (1989). 【16】 Tannehill, J. C., Buelow, P. C., Ievalts, J. O., and Lawrence, S. L.,"Three-Dimensional Upwind Parabolized Navier-Stokes Code for Real Gas Flows," Journal of Spacecraft, and Rockets, Vol. 27, No. 2, pp.150-159, (1990). 【17】 Bhutta, B. A. and Lewis, C. H.,"Prediction of Supersonic/Hypersonic Viscous Flows Over Re-entry Vehicles and Decoys," Journal of Spacecraft, and Rockets, Vol. 27, No. 5, pp. 493-502, Sept.-Oct. (1990). 【18】 Remi Abgrall,"An Extension of Roe's Upwind Scheme to Algebraic Equilibrium Real Gas Models," Computers & Fluids Vol. 19, No. 2, pp. 171-182, (1991). 【19】 Yehuda Tassa and Raul Conti,"Numerical Navier-Stokes Modeling of Hypersonic Laminar Wakes Behind Blunt-Cones with Real-Gas Effects," AIAA 25th Aerospace Sciences Meeting, AIAA-86-0374, (1987). 【20】 Candler G. V. and MacCormack," Hypersonic Flow Past 3-D Configurations," AIAA 25th Aerospace Sciences Meeting, AIAA-87-0480, (1987). 【21】 Ben-Artzi, M., and Falcovitz, J.,"A Second-Order Godunov-Type Scheme for Compressible Fluid Dynamics, " J. of Computational Physics, Vol. 55, pp. 1-32. (1984) 【22】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, " J. of Computational Physics, Vol. 43, pp. 357-372. (1981a) 【23】 Roe, P. L.,"The Use of the Riemann Problem in Difference Schemes, " Lecture Notes in Physics, Vol. 141, pp. 354-359. (1981b) 【24】 Colella, P., and Glaz, H. M.,"Efficient Solution Algorithms for the Riemann Problem for Real Gases, " J. of Computational Physics, Vol. 59, pp. 264-289 (1985). 【25】 Loh, C. Y., and Hui, W. H.,"A New Lagrangian Method for Steady Supersonic Flow Computation, I- Godunov Scheme, " J. of Computational Physics, Vol. 89, pp. 207-240. (1990) 【26】 Hsu, C. A., and Yang, J. Y.,"A High-Order Streamline Godunov Scheme for Steady Supersonic Flow Computation, " Computer Methods in Applied Mechanics and Engineering, Vol. 124, pp. 283-302. (1995) 【27】 Tannehill, J. C., and Mugge, P. H.,"Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods," NASACR-2470, October (1974). 【28】 Anderson, J. D., Jr.,"Hypersonic and High Temperature Gas Dynamics, " New York, pp.441-442 , (1989). 【29】 Park, C."Nonequilibrium Hypersonic Aero-thermodynamics, " a Wily-Interscience Publication, New York/Chichester/Brisbane/Toronto/Singapore, (1989). 【30】 Hayes, W. D., Probstein, R. F.,"Hypersonic Flow Theory, " Second Edition, Vol. 1, (1966). 【31】 Tannehill, J. C., and Mugge, P. H."Improved Curve Fits for the Therodynamic Properties of equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods, " NASA CR-2470, Oct. (1974). 【32】 Beam ,R. M.and R. F. Warming, "An Implicit Finite-difference Algorithm for Hyperbolic System in Conservation Law Form, " J. of Computational Physics, Vol. 22, (1976). 【33】 Powell, K. G. and Murman, E. M., "An Embedded Mesh Procedure for Leading-edge Vortex Flows, " in Preceeding of the Transonic Symposium, (1988). 【34】 Tai, C. H.,"Acceleration Techniques for Explicit Euler Codes , " a dissertation, Aerospace Engineering in the University of Michigan, (1990). 【35】 Hoffmann, K. A.,"Computational Fluid Dynamics for Engineers, a Publication of Engineering Education System, Austin, Texas, USA, (1989). 【36】 van Leer, B., Thomas, J. L., Roe, P. L., and Newsome, R. W.,"A Comparison of Numerical Flux Formula for the Euler and Navier-Stokes Equation, " AIAA *th Computational Fluid Dynamics Conference, (1987). 【37】 Mulder, W. and van Leer, B."Experiments with Implicit Upwind Methods for the Euler Equation, " Journal of Computational Physics, Vol.159, pp. 232-246 , (1985). 【38】 Mrretti, G."The -Scheme, " Computers and Fluids, vol. 7, (1979). 【39】 Chakravarthy, S. K., Anderson, D. A., and Salas, M. D., "The split-coefficient matrix for hyperbolic systems of gas dynamic equations, "AIAA Paper 80-0268, (1980). 【40】 van Leer, B.,"Flux-vector Splitting for the Euler Equations, " Lecture Notes in Physics, Vol. 170, (1982). 【41】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, "Journal of Computational Physics, Vol. 43, (1981). 【42】 Roe, P. L.,"Discrete Models for the Numerical Analysis of Time-Dependent Multi-Dimensional Gas Dynamics, " Journal of Computational Physics, Vol. 63, (1986). 【43】 van Leer, B.,"ON the Relation Between the Upwind Difference Schemes of Godunov, Engguist-Osher and Roe, " SIAM Journal on Scientific and Statistical Computing, Vol. 5, (1984). 【44】 "Study of Freformance Potential of Hydrogen Fueled, Airbreathing Cruise Aircraft, " NASA Contract Nas 2-3180, General Dynamics? Convair Division, Final Reports CR-73074 Throught 73078, Sept., (1966). 【45】 Hirsch, C."Numerical Computation of Internal and External Flow, " A Wiley-Interscience Publication, Vol.2, (1989). 【46】 Liou, M. S., van Leer, B., Shuen, J. S.,"Splitting of Invicid Fluxes for Real Gases, " Journal of Computational Physics, Vol. 87, pp.1-24 , (1990) . 【47】 Glaister, P.,"An Approximate Linearised Riemann Solver for the Euler Equations for Real Gases, " Journal of Computational Physics, Vol. 74, pp.382-408 , (1988). 【48】 Abgrall, R.,"An Extension of Roe’s Upwind Scheme to Algebraic Equilibrium Real Gas Models, " Computers and Fluids, Vol. 19, No. 2, pp.171-182 , (1991). 【49】 Li, C. P., "Computational Aspects of Chemically Reacting Flows, "AIAA-91-1574, April (1991). 【50】 Josyula, E., Gaitonde. D. and Shang, J., "Nonequilbrium Hypersonic Flow Solution Using Roe Flux Difference Split Scheme, "AIAA-91-1700, June (1991). 【51】 Jameson, A.,"Numerical Solution of the Euler Equations for Compressible Inviscid Fluids, " in Numerical Methods for the Euler Equations of Fluid Dynamics, (Angrand, F., Dervieux, A., Desideri, J.A., and Glowinski, R., eds.), SIAM, (1985). 【52】 Mitchel, J. W., and Thornhill, C. K.,"The Physical Mechanism of the Muzzle Flashes of Guns, " Armament Research Dept., Fort Halstead, UK, Rept. 7/44, Feb. (1944). 【53】 Oswatitsch, K.,"Flow Research to Improve the Efficiency of Muzzle Brakes, " R 1001, Army Ordnance, Goettingen, Germany, October (1944). 【54】 Smith, F.,"Model Experiments on Muzzle Brakes, " R2/66, RARDE, FT Malstead, UK, June (1966). 【55】 Oswatitsch, K.,"Intermediate Ballistics, Deutsche Versuchsanstalt fur Luft- und Raumfahrt, Institut fur theoretische Gasdynamik, " Aachen, Germany, June (1964). 【56】 E. M. Schmidt and S. Duffy,"Noise from Shock Tube Facilities. " AIAA Paper 85-0046, Jan. (1985). 【57】 Loh, C. Y., and Hui, W. H.,"A New Lagrangian Method for Steady Supersonic Flow Computation, I- Godunov Scheme, " J. of Computational Physics, Vol. 89, pp. 207-240. (1990). 【58】 Hsu, C. A., and Yang, J. Y.,"A High-Order Streamline Godunov Scheme for Steady Supersonic Flow Computation, " Computer Methods in Applied Mechanics and Engineering, Vol. 124, pp. 283-302. (1995). 【59】 Sivells, J. C.,"Aerodynamic Design of Axisymmetric Hypersonic Wind Tunnel Nozzles, " Journal of Spacecraft and Rockets, Vol. 7, No. , pp. 1292-1299 11, (1970). 【60】 Korte, J. J., Kumar, A., Singh, D. J., and Grossman, B.,"Least Squares/Parabolized Navier-Stokes Procedure for Optimizing Hypersonic Wind Tunnel Nozzles, " Journal of Propulsion and Power, Vol. 8, No. , pp.1057-1063 5, (1992); also AIAA Paper 91-2273, June (1991). 【61】 Huddleston, D. H.,"Aerodynamic Design Optimization Using Comutational Fluid Dynamics, "Ph.D. Disseration, Univ. of Tennessee, Knoxville, TN, (1989). 【62】 Charlie H. Cooke., and Fansler K. S.,"Comparison with experiment for TVD calculations of blast waves from a shock tube", International journal for numerical methods in fluids VOL.9.9-12, (1989). 【63】 Charlie H. Cooke., and Fansler K. S.,"Numerical simulation of silencers’,Proc." 10th Int. Symp. On Ballistics, San Diego, CA, 27-28 October (1987). 【64】 Wang, J. C. T., and Widhopf, G. F."Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme, " Computers & Fluids Vol. 18. No. 1. pp.103-pp.137, (1990). 【65】 John J. Korte and Jeffrey S. Hodge"Flow Quality of Hypersonic Wind-Tunnel Nozzles Designed Using Computational Fluid Dynamics" Journal of Spacecraft and Rockets vol. 32, No.4, July-August (1995). 【66】 Iain D. Boyd and Douglas B. VanGilder"Computational and Experimental Investigations of Rarefied Flows in Small Nozzles" AIAA Journal Vol. 34, No. 11, November (1996). 【67】 Z. Jiang and K. Takayama"Refection and Focusing of Toroidal Shock Waves from Coaxial Annular Shock Tubes" Computer & Fluid Vol.27, Nos 5-6 pp. 553-562. (1998). 【68】 Glass, I. I. & Patterson, G. N., "A Theoretical and Experimental Study of Shock Tube Flows, " Journal of the Aeronautical Sciences, Vol.22, No.2, pp.73-100 , (1955). 【69】 Rothkopf, E. M. and Low, W., "Digphragm Opening Process in Shock Tube, " Physics of Fluids, Vol. 17, pp.1169-1173 , June (1974). 【70】 Jameson, A., Schmidt, W., and Turkel, E.,"Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes," AIAA Paper 81-1259, Jun., (1981). 【71】 Hirsch, C.,"Numerical Computation of Internal and External flow," John Wiley & Sons Ltd. chap. 6 Vol. 1, (1989). 【72】 van Leer, B., Thomas, J. L., Roe, P. L., and Newsome, R. W.,"A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations," AIAA Paper 87-1104-CP, (1987). 【73】 van Leer. B.," On the Relation between the Upwind-Difference Schemes of Godunov, Engquist-Osher and Roe," SIMA Journal on Scientific and Statistical Computing, Vol. 5, (1984). 【74】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vector, and Difference Schemes," Journal of Computational Physics, Vol. 43, pp.357-372 , (1981). 【75】 van Leer. B., Tai, C. H. and Powell, K. G."Design of Optimally Smoothing Multi-Stage Scheme for the Euler Equations, "AIAA 9th Computational Fluid Dynamics Conference, 89-1933, June (1989). 【76】 van Leer. B.,"Computational Methods for Ideal Compressible Flow, " NASA-CR-172180 (1983) 【77】 van Leer. B., Lee, W. T., and Powell, K. G.,"Sonic-Point Capturing, " AIAA 89-1945-cp, (1989). 【78】 Hirsch, C.,"Numerical Computation of Internal and External flow," John Wiley & Sons Ltd. chap. 21 Vol. 2, (1990). 【79】 Harten, A.,"On the Nonlinearity of Modern Shock-Capturing Schemes, " ICASE Report 86-69, Oct. (1986). 【80】 Sweby, P. K.,"High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, " SIAM J. Numerical Analysis, Vol. 21, pp.995 , (1984). 【81】 Tai, C. H., Chiang, D. C. and Su, Y. P.,"Explicit Time Marching Method for the Time-Depent Euler Computations, " Journal of Computational Physics, Vol. 130, pp.191-202, (1997). 【82】 Hirsch, C.,"Numerical Computation of Internal and External flow," John Wiley & Sons Ltd. chap. 16. Vol. 2, (1990), 【83】 Anderson, Dale A., Tannehill, John C. and Pletcher, Richard H."Computational Fluid Mechanics and Heat Transfer, " McGraw-Hill, Washington, (1987). 【84】 van Leer. B.,"Towards the Ultimate Conservative Difference Scheme. V:A Second Order Sequel to Godunov’s Method ,”Journal of Computation Physics, Vol. 32, pp. 101, (1979). 【85】 Schmidt, E. M., Gion, E. J., and Fansler, K. S., “Analysis of Weapon Parameters Controlling the Muzzle Blast Overpressure Field,” 5th International Symposium on Ballistics, Toulouse, France, April (1980). 【86】 Wang, J. C. T., and Widhopf, G. F.“Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme,” Computers & Fluids Vol. 18. No. 1. pp.103-pp.137, (1990). 【87】 Dillon, R. E. Jr. and Nagamatsu, Henry T.,“An Experimental Study of Perforated Muzzle Brakes,” Technical Report ARLCB-TR-84004, Benet Weapons Labortory, Watervliet, Ny, February (1984).
|