跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇耀光
研究生(外文):Su,Yao-Kuang
論文名稱:極超音速震波風洞試驗模型穩定流場建立程序之數值模擬
論文名稱(外文):Numerical Simulation of the Operation Process in Supersonic Reflection Shock Tunnel in Establishing the Steady Flow Situation
指導教授:戴昌賢戴昌賢引用關係苗志銘苗志銘引用關係
指導教授(外文):Tai ,Chang-HsienMiao,Jr-Ming
學位類別:碩士
校院名稱:中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:237
中文關鍵詞:震波風洞有限體積法極音速非定常流化學平衡流可調式網格系統
外文關鍵詞:shock tunnelfinite volume methodhypersonic unsteady flowchemical equilibrium flowadaptive grid system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以軸對稱、三維、黏性、依時性數學模式,以模擬極超音速反射型震波風洞內複雜之暫態流場問題,並探討在不同馬赫數下穩定流場建立之時間,提供實驗工作者數據資料。本研究採用上風TVD數值法解無黏性Euler方程組或Navier-Stokes方程組;採用人工耗散項最小的Roe’s Solver,配合Kappa高階MUSCL Scheme解決在空間通量計算方面的問題;而在時間離散方面,則採用具二階精度的Hancock法則進行時間積分。程式建立時,即列入非定常流場計算用之可調式網格系統及適型之多區塊網格邊界處理模式,以計算複雜依時性之氣動力變化情形。本研究採用全尺寸之震波風洞模型建立網格系統進行程式運算,研究結果顯示,若是忽略高壓驅動段之存在,是無法模擬真實物理現象。
本研究採用代數法產生計算所需可調式網格系統,同時進行格點精緻化之工作;並分別建立Euler 或是Navier-Stokes方程式組有限體積法模擬主程式;繼而加入Tannehill & Mugge平衡空氣曲線吻合簡化方式之副程式;目標乃探討不同馬赫數下,極超音速反射型震波風洞內穩定流場建立之過程,及其影響穩定流場建立之物理機制;探討不同測試之參數將包括不同之噴嘴外形、不同初始壓力比條件下,極超音速反射型震波風洞內穩定流場建立之機制,以提供實驗工作者所需。研究結果顯示,噴嘴外型與初始壓力比,皆對此非定常流場之發展特性有所影響。

In this thesis, a series of numerical processes combined with Roe’s scheme and van Leer’s kappa scheme are developed to examine the flow mechanisms in a hypersonic reflection shock tunnel.
The mathematical model adopted for computing the flowfields is based on the full Navier-Stokes or Euler algebraic. The thermodynamic properties are modified by Tannehill and Mugge’s polynomial correlations for hypersonic flowfield simulation. A three-dimensional numerical inviscid and viscous model of the time-dependent near field of multi-block hypersonic flow phenomena have been developed in this thesis. The TVD upwind method for solving the governing equations has been developed to simulate these complex problems. For the spatial discretization, the least artificial viscous Roe’s solver with high order Kappa MUSCL interpolation was used and, the second order explicit Hancock method was employed for time integration.
Finally, a computer code was established for the computation of this unsteady hypersonic flowfield. In the construction of grid system, a full-scale test model is adopted to avoid the loss of real physical characteristics. A adaptive grid system is applied by the algebraic method, and the local grid refinement is processed to improve the convergence rates. The aim of present investigation is to test the effects of nozzle geometry and initial pressure ratio on the flow developing within a supersonic reflection shock tube. Both the complex and procedure unsteady flow structure in addition to the time history of Mach number can be evaluated from present numerical results.

目 錄
誌謝…………………………………………………………………II
摘要(中文)…………………………………………………………IV
ABSTRACT………………………………………………………VI
目錄………………………………………………………………VIII
表錄………………………………………………………………XII
圖錄………………………………………………………………XIII
符號與縮寫……………………………………………………XVII
1. 緒論………………………………………………………………1
1.1. 引言…………………………………………………………1
1.2. 研究動機及背景…………………………………………..1
1.3. 文獻回顧……………………………………………………3
1.4. 研究方向…………………………………………………...5
1.5. 研究方法…………………………………………………..6
1.6. 研究內容………………………………………………….10
2. 極超音速震波風洞之特性說明……………………………15
2.1. 工作原理…………………………………………………15
2.2. 流場描述…………………………………………………17
2.3. 極超音速震波風洞流場理論分析……………………18
2.4. 困難與探討………………………………………………20
3 數學模式………………………………………………………23
3.1. 統御方程式………………………………………………24
3.2. 無因次化處理……………………………………………28
3.3. 成份方程式………………………………………………32
3.4. 熱力性質修正……………………………………………34
4. 數值方法………………………………………………………36
4.1. 對流項的離項……………………………………………38
4.2. 有限體積法………………………………………………38
4.3. 空間離散…………………………………………………40
4.4. 時間離散…………………………………………………44
4.5. Roe’s 法則……………………………………………….48
4.6. 熵條件……………………………………………………49
4.7. 殘值的處理………………………………………………50
5. 邊界條件處理…………………………………………………52
5.1. 邊界條件定義……………………………………………53
5.2. 物體壁面邊界條件………………………………………54
5.3. 遠處邊界條件……………………………………………55
5.3.1. 超音速流入………………………………………56
5.3.2. 超音速流出………………………………………57
5.3.3. 次音速流入………………………………………57
5.3.4. 次音速流出………………………………………58
5.4. 網格區塊交接邊界條件……………………………….59
5.4.1. 對稱流場邊界條件………………………………60
5.4.2. 軸對稱流場邊界條件……………………………60
5.4.3. 三維面對稱流場邊界條件………………………61
6. 網格系統………………………………………………………63
6.1. 多區塊網格系統…………………………………………64
6.2. 網格產生…………………………………………………64
6.2.1 突張管………………………………………………64
6.2.2 極超音速反射型震波風洞……………………….65
6.2.3 非均勻結構性網格系統處理…………………….67
6.4. 三維網格系統處理………………………………………68
6.5. Navier-Stokes網格系統處理……………………………70
7. 結果與討論……………………………………………………73
7.1. 程式驗證…………………………………………………73
7.1.1 突張管近場流場…………………………………...74
7.1.2 量測點之超高壓力比較…………………………..75
7.2. 極超音速震波風洞流場現象分析……………………….76
7.3. 非黏性極超音速震波風洞流場現象分析………………79
7.4. 黏性效應下之極超音速震波風洞流場現象分析……..79
7.4.1 黏性效應化學平衡流與化學平衡流比較………86
7.4.2 噴嘴前段管徑不同之黏性化學平衡流比較……88
7.4.3 薄膜破裂強度黏性效應化學平衡流比較………89
7.4.4 背壓不同之黏性效應化學平衡流比較…………90
7.4.5 噴嘴後段管徑不同之黏性化學平衡流比較……92
8. 結論與建議……………………………………………………94
參考文獻…………………………………………………………..97
附錄A……………………………………………………………..180
附錄B………………………………………………………………213
自傳……………………………………………………………….232
簡歷……………………………………………………………….235

參考文獻
【1】 Glass, I. I.,and Hall, J. G.,"Shock Tubes, Handbook of Supersonic Aerodynamics," NAVORD Report 1488, Vol. 6, Section 18. (1958)
【2】 Lukasiewicz, J.,"Shoch Tube Theory and Application, " National Aeronautical Establishment, Rept. 15, Ottawa, Canada. (1952)
【3】 Nagamatsu, H. T.,"Shock Tube Technology and Design, " Fundamental Data Obtained From a Shock-Tube Experiments,” Edited by A. Feri, pp. 86-136, Pergamon Press. (1961)
【4】 Bradley, J. N.,"Shock Waves in Chemistry and Physics, " Methuen & Co. (London), J. Wiley&Sons (New York). (1962)
【5】 Soloukhin, R. I.,"Shock Waves and Detonation in Gases, " State Publishing House of Physical-Mathematical Literature, Moscow; English Translation Published by Mono Book Corp., Baltimore. (1966)
【6】 Lester Lees,"Hypersonic Wakes and Trails,"AIAA Journal, Vol. 2, pp. 417-428 March (1964).
【7】 Victor Zakkay and Robert J. C.,"An Experimental Investigation of the Near Wake of a Slender Cone at M = 8 and 12,"AIAA Journal, Vol. 4, No. 1, pp. 41-46, January (1966) .
【8】 Muntz, E. P., and Softley, E. J., "A Study of Laminar Near Wakes, "AIAA Journal, Vol. 4, pp. 961-968, June (1966).
【9】 Murman, Earll. M.,"Experimental Studies of a Laminar Hypersonic Cone Wake, "AIAA Journal, Vol. 7, No.9, September (1969), pp. 1724-1730.
【10】 Cassanto, J. M., Schiff, J. and Softley, E. J.,"Base Pressure Measurements on Slender Cones with Domed Afterbodies, "AIAA Journal, Vol. 7, No. 8, pp. 1607-1609, August (1969).
【11】 Cassanto, J. M., and Rasmussen, N. S., and Coats, J. D., "Correlation of Free-Flight Base Pressure Data for M=4 to M=19,"AIAA Journal, Vol. 7, No. 6, pp. 1154-1157, June (1969).
【12】 Bulmer, B. M.,"Study of Base Pressure in Laminar Hypersonic Flow: Re-entry Flight Measurements, "AIAA Journal, Vol. 13, No. 10, pp. 1340-1348, Oct. (1975).
【13】 Dolling, D. S., and Gray, W. K.,"Experimental Study of Supersonic Turbulent Flow on a Blunted Axisymmetric Body, "AIAA Journal, Vol. 24, No. 5, pp. 793-799, May (1986).
【14】 J. C. Adams, Jr.,"Analysis of Three-Dimensional Compressible Turbulent Boundary Layer on a Sharp Cone at Incient Supersonic and Hypersonic Flow," AEDC-TR-72-66, June (1972).
【15】 Lawrence D. H., James L. P. and Arthur, D. D., "Hypersonic Parabolized Navier-Stokes Code Validation on a Sharp Nose Cone," Journal of Spacecraft, and Rockets, Vol. 26, No. 7, pp. 650-656, July (1989).
【16】 Tannehill, J. C., Buelow, P. C., Ievalts, J. O., and Lawrence, S. L.,"Three-Dimensional Upwind Parabolized Navier-Stokes Code for Real Gas Flows," Journal of Spacecraft, and Rockets, Vol. 27, No. 2, pp.150-159, (1990).
【17】 Bhutta, B. A. and Lewis, C. H.,"Prediction of Supersonic/Hypersonic Viscous Flows Over Re-entry Vehicles and Decoys," Journal of Spacecraft, and Rockets, Vol. 27, No. 5, pp. 493-502, Sept.-Oct. (1990).
【18】 Remi Abgrall,"An Extension of Roe's Upwind Scheme to Algebraic Equilibrium Real Gas Models," Computers & Fluids Vol. 19, No. 2, pp. 171-182, (1991).
【19】 Yehuda Tassa and Raul Conti,"Numerical Navier-Stokes Modeling of Hypersonic Laminar Wakes Behind Blunt-Cones with Real-Gas Effects," AIAA 25th Aerospace Sciences Meeting, AIAA-86-0374, (1987).
【20】 Candler G. V. and MacCormack," Hypersonic Flow Past 3-D Configurations," AIAA 25th Aerospace Sciences Meeting, AIAA-87-0480, (1987).
【21】 Ben-Artzi, M., and Falcovitz, J.,"A Second-Order Godunov-Type Scheme for Compressible Fluid Dynamics, " J. of Computational Physics, Vol. 55, pp. 1-32. (1984)
【22】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, " J. of Computational Physics, Vol. 43, pp. 357-372. (1981a)
【23】 Roe, P. L.,"The Use of the Riemann Problem in Difference Schemes, " Lecture Notes in Physics, Vol. 141, pp. 354-359. (1981b)
【24】 Colella, P., and Glaz, H. M.,"Efficient Solution Algorithms for the Riemann Problem for Real Gases, " J. of Computational Physics, Vol. 59, pp. 264-289 (1985).
【25】 Loh, C. Y., and Hui, W. H.,"A New Lagrangian Method for Steady Supersonic Flow Computation, I- Godunov Scheme, " J. of Computational Physics, Vol. 89, pp. 207-240. (1990)
【26】 Hsu, C. A., and Yang, J. Y.,"A High-Order Streamline Godunov Scheme for Steady Supersonic Flow Computation, " Computer Methods in Applied Mechanics and Engineering, Vol. 124, pp. 283-302. (1995)
【27】 Tannehill, J. C., and Mugge, P. H.,"Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods," NASACR-2470, October (1974).
【28】 Anderson, J. D., Jr.,"Hypersonic and High Temperature Gas Dynamics, " New York, pp.441-442 , (1989).
【29】 Park, C."Nonequilibrium Hypersonic Aero-thermodynamics, " a Wily-Interscience Publication, New York/Chichester/Brisbane/Toronto/Singapore, (1989).
【30】 Hayes, W. D., Probstein, R. F.,"Hypersonic Flow Theory, " Second Edition, Vol. 1, (1966).
【31】 Tannehill, J. C., and Mugge, P. H."Improved Curve Fits for the Therodynamic Properties of equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods, " NASA CR-2470, Oct. (1974).
【32】 Beam ,R. M.and R. F. Warming, "An Implicit Finite-difference Algorithm for Hyperbolic System in Conservation Law Form, " J. of Computational Physics, Vol. 22, (1976).
【33】 Powell, K. G. and Murman, E. M., "An Embedded Mesh Procedure for Leading-edge Vortex Flows, " in Preceeding of the Transonic Symposium, (1988).
【34】 Tai, C. H.,"Acceleration Techniques for Explicit Euler Codes , " a dissertation, Aerospace Engineering in the University of Michigan, (1990).
【35】 Hoffmann, K. A.,"Computational Fluid Dynamics for Engineers, a Publication of Engineering Education System, Austin, Texas, USA, (1989).
【36】 van Leer, B., Thomas, J. L., Roe, P. L., and Newsome, R. W.,"A Comparison of Numerical Flux Formula for the Euler and Navier-Stokes Equation, " AIAA *th Computational Fluid Dynamics Conference, (1987).
【37】 Mulder, W. and van Leer, B."Experiments with Implicit Upwind Methods for the Euler Equation, " Journal of Computational Physics, Vol.159, pp. 232-246 , (1985).
【38】 Mrretti, G."The -Scheme, " Computers and Fluids, vol. 7, (1979).
【39】 Chakravarthy, S. K., Anderson, D. A., and Salas, M. D., "The split-coefficient matrix for hyperbolic systems of gas dynamic equations, "AIAA Paper 80-0268, (1980).
【40】 van Leer, B.,"Flux-vector Splitting for the Euler Equations, " Lecture Notes in Physics, Vol. 170, (1982).
【41】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, "Journal of Computational Physics, Vol. 43, (1981).
【42】 Roe, P. L.,"Discrete Models for the Numerical Analysis of Time-Dependent Multi-Dimensional Gas Dynamics, " Journal of Computational Physics, Vol. 63, (1986).
【43】 van Leer, B.,"ON the Relation Between the Upwind Difference Schemes of Godunov, Engguist-Osher and Roe, " SIAM Journal on Scientific and Statistical Computing, Vol. 5, (1984).
【44】 "Study of Freformance Potential of Hydrogen Fueled, Airbreathing Cruise Aircraft, " NASA Contract Nas 2-3180, General Dynamics? Convair Division, Final Reports CR-73074 Throught 73078, Sept., (1966).
【45】 Hirsch, C."Numerical Computation of Internal and External Flow, " A Wiley-Interscience Publication, Vol.2, (1989).
【46】 Liou, M. S., van Leer, B., Shuen, J. S.,"Splitting of Invicid Fluxes for Real Gases, " Journal of Computational Physics, Vol. 87, pp.1-24 , (1990) .
【47】 Glaister, P.,"An Approximate Linearised Riemann Solver for the Euler Equations for Real Gases, " Journal of Computational Physics, Vol. 74, pp.382-408 , (1988).
【48】 Abgrall, R.,"An Extension of Roe’s Upwind Scheme to Algebraic Equilibrium Real Gas Models, " Computers and Fluids, Vol. 19, No. 2, pp.171-182 , (1991).
【49】 Li, C. P., "Computational Aspects of Chemically Reacting Flows, "AIAA-91-1574, April (1991).
【50】 Josyula, E., Gaitonde. D. and Shang, J., "Nonequilbrium Hypersonic Flow Solution Using Roe Flux Difference Split Scheme, "AIAA-91-1700, June (1991).
【51】 Jameson, A.,"Numerical Solution of the Euler Equations for Compressible Inviscid Fluids, " in Numerical Methods for the Euler Equations of Fluid Dynamics, (Angrand, F., Dervieux, A., Desideri, J.A., and Glowinski, R., eds.), SIAM, (1985).
【52】 Mitchel, J. W., and Thornhill, C. K.,"The Physical Mechanism of the Muzzle Flashes of Guns, " Armament Research Dept., Fort Halstead, UK, Rept. 7/44, Feb. (1944).
【53】 Oswatitsch, K.,"Flow Research to Improve the Efficiency of Muzzle Brakes, " R 1001, Army Ordnance, Goettingen, Germany, October (1944).
【54】 Smith, F.,"Model Experiments on Muzzle Brakes, " R2/66, RARDE, FT Malstead, UK, June (1966).
【55】 Oswatitsch, K.,"Intermediate Ballistics, Deutsche Versuchsanstalt fur Luft- und Raumfahrt, Institut fur theoretische Gasdynamik, " Aachen, Germany, June (1964).
【56】 E. M. Schmidt and S. Duffy,"Noise from Shock Tube Facilities. " AIAA Paper 85-0046, Jan. (1985).
【57】 Loh, C. Y., and Hui, W. H.,"A New Lagrangian Method for Steady Supersonic Flow Computation, I- Godunov Scheme, " J. of Computational Physics, Vol. 89, pp. 207-240. (1990).
【58】 Hsu, C. A., and Yang, J. Y.,"A High-Order Streamline Godunov Scheme for Steady Supersonic Flow Computation, " Computer Methods in Applied Mechanics and Engineering, Vol. 124, pp. 283-302. (1995).
【59】 Sivells, J. C.,"Aerodynamic Design of Axisymmetric Hypersonic Wind Tunnel Nozzles, " Journal of Spacecraft and Rockets, Vol. 7, No. , pp. 1292-1299 11, (1970).
【60】 Korte, J. J., Kumar, A., Singh, D. J., and Grossman, B.,"Least Squares/Parabolized Navier-Stokes Procedure for Optimizing Hypersonic Wind Tunnel Nozzles, " Journal of Propulsion and Power, Vol. 8, No. , pp.1057-1063 5, (1992); also AIAA Paper 91-2273, June (1991).
【61】 Huddleston, D. H.,"Aerodynamic Design Optimization Using Comutational Fluid Dynamics, "Ph.D. Disseration, Univ. of Tennessee, Knoxville, TN, (1989).
【62】 Charlie H. Cooke., and Fansler K. S.,"Comparison with experiment for TVD calculations of blast waves from a shock tube", International journal for numerical methods in fluids VOL.9.9-12, (1989).
【63】 Charlie H. Cooke., and Fansler K. S.,"Numerical simulation of silencers’,Proc." 10th Int. Symp. On Ballistics, San Diego, CA, 27-28 October (1987).
【64】 Wang, J. C. T., and Widhopf, G. F."Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme, " Computers & Fluids Vol. 18. No. 1. pp.103-pp.137, (1990).
【65】 John J. Korte and Jeffrey S. Hodge"Flow Quality of Hypersonic Wind-Tunnel Nozzles Designed Using Computational Fluid Dynamics" Journal of Spacecraft and Rockets vol. 32, No.4, July-August (1995).
【66】 Iain D. Boyd and Douglas B. VanGilder"Computational and Experimental Investigations of Rarefied Flows in Small Nozzles" AIAA Journal Vol. 34, No. 11, November (1996).
【67】 Z. Jiang and K. Takayama"Refection and Focusing of Toroidal Shock Waves from Coaxial Annular Shock Tubes" Computer & Fluid Vol.27, Nos 5-6 pp. 553-562. (1998).
【68】 Glass, I. I. & Patterson, G. N., "A Theoretical and Experimental Study of Shock Tube Flows, " Journal of the Aeronautical Sciences, Vol.22, No.2, pp.73-100 , (1955).
【69】 Rothkopf, E. M. and Low, W., "Digphragm Opening Process in Shock Tube, " Physics of Fluids, Vol. 17, pp.1169-1173 , June (1974).
【70】 Jameson, A., Schmidt, W., and Turkel, E.,"Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes," AIAA Paper 81-1259, Jun., (1981).
【71】 Hirsch, C.,"Numerical Computation of Internal and External flow," John Wiley & Sons Ltd. chap. 6 Vol. 1, (1989).
【72】 van Leer, B., Thomas, J. L., Roe, P. L., and Newsome, R. W.,"A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations," AIAA Paper 87-1104-CP, (1987).
【73】 van Leer. B.," On the Relation between the Upwind-Difference Schemes of Godunov, Engquist-Osher and Roe," SIMA Journal on Scientific and Statistical Computing, Vol. 5, (1984).
【74】 Roe, P. L.,"Approximate Riemann Solvers, Parameter Vector, and Difference Schemes," Journal of Computational Physics, Vol. 43, pp.357-372 , (1981).
【75】 van Leer. B., Tai, C. H. and Powell, K. G."Design of Optimally Smoothing Multi-Stage Scheme for the Euler Equations, "AIAA 9th Computational Fluid Dynamics Conference, 89-1933, June (1989).
【76】 van Leer. B.,"Computational Methods for Ideal Compressible Flow, " NASA-CR-172180 (1983)
【77】 van Leer. B., Lee, W. T., and Powell, K. G.,"Sonic-Point Capturing, " AIAA 89-1945-cp, (1989).
【78】 Hirsch, C.,"Numerical Computation of Internal and External flow," John Wiley & Sons Ltd. chap. 21 Vol. 2, (1990).
【79】 Harten, A.,"On the Nonlinearity of Modern Shock-Capturing Schemes, " ICASE Report 86-69, Oct. (1986).
【80】 Sweby, P. K.,"High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, " SIAM J. Numerical Analysis, Vol. 21, pp.995 , (1984).
【81】 Tai, C. H., Chiang, D. C. and Su, Y. P.,"Explicit Time Marching Method for the Time-Depent Euler Computations, " Journal of Computational Physics, Vol. 130, pp.191-202, (1997).
【82】 Hirsch, C.,"Numerical Computation of Internal and
External flow," John Wiley & Sons Ltd. chap. 16. Vol.
2, (1990),
【83】 Anderson, Dale A., Tannehill, John C. and Pletcher,
Richard H."Computational Fluid Mechanics and Heat
Transfer, " McGraw-Hill, Washington, (1987).
【84】 van Leer. B.,"Towards the Ultimate Conservative Difference Scheme. V:A Second Order Sequel to Godunov’s Method ,”Journal of Computation Physics, Vol. 32, pp. 101, (1979).
【85】 Schmidt, E. M., Gion, E. J., and Fansler, K. S., “Analysis of Weapon Parameters Controlling the Muzzle Blast Overpressure Field,” 5th International Symposium on Ballistics, Toulouse, France, April (1980).
【86】 Wang, J. C. T., and Widhopf, G. F.“Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme,” Computers & Fluids Vol. 18. No. 1. pp.103-pp.137, (1990).
【87】 Dillon, R. E. Jr. and Nagamatsu, Henry T.,“An Experimental Study of Perforated Muzzle Brakes,” Technical Report ARLCB-TR-84004, Benet Weapons Labortory, Watervliet, Ny, February (1984).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文