[1] Akansu, A. N. and Haddad, R. A., Multiresolution signal decomposition:transforms, subbands, and wavelets, Academic Press, Boston, 1992.
[2] Benedetto, J. J. and Frazier, M. W., Wavelets:mathematics and applications, CRC Press, Boca Raton, 1994.
[3] Chui,C. K., Wavelets:a tutorial in theory and applications, Academic Press, Boston, 1992.
[4] Chui, C. K., An introduction to wavelets, Acdemic Press, Boston, 1992
[5] Cohen, A. and Ryan, R. D., Wavelets and multiscale signal processing, Chapman & Hall, Lodon, 1995.
[6] Daubechies, I., Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadephia, Pa, 1992.
[7] DeVore, R. A., Jawerth, B., and Lucier, B. J., “Image Compression Through Wavelet Transform Coding,” IEEE Transactions on Information Theory, Vol.38, No.2, March 1992, pp.719-746.
[8] Doroslovacki, M. I. and Fan, H., “Wavelet-Based Linear System Modeling and Adaptive Filtering,” IEEE Transactions On Signal Processing, Vol.44, No.5, May 1996, pp.1156-1167.
[9] Francisco, J. V. M. and Hans I. W., “Deconvolution By Wavelets For Extracting Impulse response Functions,” ASME Proceedings of Design Engineering Technical Conferences, September 14-17, 1997.
[10] Hell, C. E. and Walnut, D. F., “Continuous and Discrete Wavelet Transforms,” Society for Industrial and Applied Mathematics, Vol.31, No.4, December 1989, pp.628-666.
[11] Jawerth, B. and Sweldens, W., “An Overview of Wavelet Based Multiresolution Analysis,” Society for Industrial and Applied Mathematics, Vol.36, No.3, September 1994, pp.377-412.
[12] Meyer, Y. and Ryan, R. D., Wavelets:algorithms & applications, Society for Industrial and Applied Mathematics, Philadelphia, 1993.
[13] Meyer, Y. and Salinger, D. H., Wavelets and operators, Cambridge University Press, New York, 1992.
[14] Meyer, Y., Wavelets and applications:proceedings of the international conference, Marseille, France, May 1989, Springer Verlag, Berlin; Masson, Paris, 1992.
[15] Misiti, M., Oppenheim, G. and Poggi, J. M., “Wavelet Toolbox,” The Math Works Inc., 1996.
[16] Nakos, G. and Joyner, D., Linear Algebra With Applications, Brooks/Cole Publishing Company, CA, 1998.
[17] Newland, D. E., An introduction to random vibrations, spectral and wavelet analysis, Wiley, New York, Longman Scientific & Technical, Harlow, Essex, England, 1993.
[18] Newland, D. E., “Practical signal analysis: do wavelets make any difference,” ASME Proceedings of Design Engineering Technical Conferences, September 14-17, 1997.
[19] Newland, D. E., “Harmonic Wavelet Analysis,” Proc.R.. Soc. Lond. A, 443, 1993a, pp.203-225.
[20] Newland, D.E., “Wavelet Analysis of Vibration, Part 1:Theory,” ASME Journal of Vibration and Acoustics, Vol.116, October 1994, pp.409-416.
[21] Newland, D. E., “Wavelet Analysis of Vibration,Part 2:Wavelet Maps,” ASME Journal of Vibration and Acoustics, Vol.116, October 1994, pp.417-425.
[22] Newland, D. E., “Some Properties of Discrete Wavelet Maps,” Probabilistic Engineering Mechanics, Vol.9, 1994, pp.59-69.
[23] Palavajjhala, S., Motard, R. L. and Joseph, B., “Process Identification Using Discrete Wavelet Transforms:Design of Prefilters,” AIChE Journal, Vol.42, No.3, March 1996, pp.777-790.
[24] Priebe, R. D. and Wilson, G. R., “Wavelet Applications to Structural Analysis,” IEEE, 1993, pp.205-208.
[25] Rioul, O. and Vetterli, M., “Wavelets and Signal Processing,” IEEE SP Magazine, October 1991, pp.14-38.
[26] Robertson, A. N., Park, K. C. and Alvin, K. F., “Identification of Structural Dynamics Models Using Wavelet-Generated Impulse Response Data,” ASME Journal of Vibration and Acoustics, Vol.120, January 1998, pp.261-266.
[27] Robertson, A. N., Park, K. C. and Alvin, K. F., “Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification,” ASME Journal of Vibration and Acoustics, Vol.120, January 1998, pp.252-260.
[28] Rugh, W. J., Linear System Theory, Prentice Hall , 1996.
[29] Ruskai, M. B., Wavelets and their applications, Jones and Bartlett, Boston, 1992.
[30] Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B., “Natureal frequencies and Dampings identification using wavelet transform: application to real data,” Mechanical Systems and Signal Processing, Vol.11(2), 1997, pp.207-218.
[31] Staszewski, W. J., “Identification of Damping in MDOF Systems Using Time-Scale Decomposition,” Journal of sound and Vibration, Vol.203, 1997, pp.283-305.
[32] Staszewski, W. J., “Wavelet Novelty Measure For Machinery Diagnostics,” ASME Proceedings of Design Engineering Technical Conferences, Setember 14-17, 1997.
[33] Stranf, G. and Nquyen, T., Wavelets and Filter Banks, Wellesely-Cambridge Press, Wellesley, MA, 1996.
[34] Tsatsanis, M. K. and Giannakis, G. B., “Time-Varying System Identification Using Wavelets,” IEEE Transactions on Signal Processing, 1992, pp.125-129.
[35] Tsatsanis, M. K. and Giannakis, G. B., “Time-Varying System Identification and Model Validation Using Wavelets,” IEEE Transactions on Signal Processing, Vol.41, No.12, December 1993, pp.3512-3523.
[36] Vetterli, M. and Kovacevic, J., Wavelets and subband coding, Prentice Hall PTR,Englewood Cliffs,N.J., 1995.
[37] Vetterli, M. and Herley, C., “Wavelets and Filter Banks:Theory and Design,” IEEE Transactions on Signal Processing, Vol.40, No.9, Setember 1992, pp.2207-2232.
[38] Walter, G. G., Wavelets and other orthogonal systems with applications, CRC, Boca Raton, 1994.
[39] Weiss, L. G., “Time-varying system characterization for wideband input signals,” Signal Processing, Vol.55, 1996, pp.295-304.
[40]Young, R. K., Wavelet theory and its applications, Kluwer Acdemic Publishers, Boston, 1993.
[41]李新欉, “小波理論之多尺度分析運用於環境量測信號與雜訊分離之研究,” 新新雙月刊, 第24卷, 第6期, 民85, pp.172-179.
[42]鄭智成, 黃奇, “Spline Wavelets之計算,” 碩士論文, 國立中正大學化學工程所, 1997.