跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/22 17:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉家榮
研究生(外文):Jia-Rong Liou
論文名稱:小波分析於線性系統識別之應用
論文名稱(外文):Identification of Linear Systems Based on Wavelet Analysis
指導教授:陳世樂陳世樂引用關係
指導教授(外文):Shyh-Leh Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:84
中文關鍵詞:系統鑑別小波分析
外文關鍵詞:System IdentificationWavelet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討線性系統的識別技術,希望利用小波分析的方法解決富立葉分析方法在多自由度系統鑑別及時變系統鑑別上的缺失。我們分別探討了線性非時變與線性時變系統之脈衝響應函數的鑑別。
在非時變系統鑑別上,我們以兩個方向進行,其一為估測系統參數,主要利用脈衝響應在Morlet小波轉換後與自然頻率、阻尼之間的關係來做鑑別。模擬及實驗結果顯示,此法所鑑別出之自然頻率與阻尼優於富立葉分析方法,尤其在伴隨雜訊及多自由度之情形下。另一方向為建立系統之脈衝響應函數。此部份我們提出了小波系統描述法,亦即利用小波基底描述系統的脈衝響應函數。在時變系統部分我們將小波系統描述法加以拓展應用,利用兩組的小波基底描述系統之脈衝響應函數,藉以掌握時變特性。除了理論分析與數值模擬外,本研究也以實驗驗證理論分析,結果均令人滿意。

This thesis presents a wavelet transform-based method for linear system identification. The proposed wavelet based method is applicable to system identification of multi-degree of freedom systems and even time-varying systems, which are difficult, if not impossible, to be identified by Fourier techniques.
In the identification of LTI(linear time invarient) systems, two approaches are taken. One is to estimate the system’s parameters. This method is based on the relationship between nature frequency, damping ratio and the Morlet wavelet transform of the system’s impulse response. Both numerical and simulation results show that this method is better than those by Fourier analysis, especially for the cases with noises and for multi-degree of freedom systems. The other approach is to identify the system’s impulse response. Here we propose a method called the Wavelet Based System Characterization (WBSC) Method. This method is to use a wavelet basis to represent system’s impulse response. The WBSC method is then extended to linear time-varying systems. Two sets of wavelet bases are now needed in order to capture the time-varying property. In addition to theoretical analysis and numerical simulations, experimental results also demonstrate satisfactory agreement with the analysis.

第一章 前言…………………………………………….1
第二章 文獻回顧………………………………………4
2.1小波理論概述…………………………………………4
2.2 小波分析於系統鑑別之應用……………………….10
第三章 線性非時變系統鑑別………………………….13
3.1 前言………………………………………………….13
3.2 系統參數之估測…………………………………….13
3.2.1 單自由度系統…………………………………….19
3.2.2 多自由度系統…………………………………….25
3.2.3 小波分析與富立葉分析之比較………………….36
3.3 小波系統描述法…………………………………….41
3.3.1 問題討論………………………………………….42
3.3.2模擬結果……………………………………………43
第四章 線性時變系統鑑別…………………………….47
4.1 前言………………………………………………….47
4.2 理論架構…………………………………………….47
4.3模擬結果………………………………………………52
第五章 實驗架構與實驗結果………………………….60
5.1實驗架構………………………………………………60
5.2 非時變系統實驗結果……………………………….65
5.3 時變系統實驗結果………………………………….71
第六章 結論與未來研究方向………………………….75
6.1 結論………………………………………………….75
6.2 未來展望…………………………………………….75
附錄A………………………………………………………77
附錄B………………………………………………………80
參考文獻………………………………………………….82

[1] Akansu, A. N. and Haddad, R. A., Multiresolution signal decomposition:transforms, subbands, and wavelets, Academic Press, Boston, 1992.
[2] Benedetto, J. J. and Frazier, M. W., Wavelets:mathematics and applications, CRC Press, Boca Raton, 1994.
[3] Chui,C. K., Wavelets:a tutorial in theory and applications, Academic Press, Boston, 1992.
[4] Chui, C. K., An introduction to wavelets, Acdemic Press, Boston, 1992
[5] Cohen, A. and Ryan, R. D., Wavelets and multiscale signal processing, Chapman & Hall, Lodon, 1995.
[6] Daubechies, I., Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadephia, Pa, 1992.
[7] DeVore, R. A., Jawerth, B., and Lucier, B. J., “Image Compression Through Wavelet Transform Coding,” IEEE Transactions on Information Theory, Vol.38, No.2, March 1992, pp.719-746.
[8] Doroslovacki, M. I. and Fan, H., “Wavelet-Based Linear System Modeling and Adaptive Filtering,” IEEE Transactions On Signal Processing, Vol.44, No.5, May 1996, pp.1156-1167.
[9] Francisco, J. V. M. and Hans I. W., “Deconvolution By Wavelets For Extracting Impulse response Functions,” ASME Proceedings of Design Engineering Technical Conferences, September 14-17, 1997.
[10] Hell, C. E. and Walnut, D. F., “Continuous and Discrete Wavelet Transforms,” Society for Industrial and Applied Mathematics, Vol.31, No.4, December 1989, pp.628-666.
[11] Jawerth, B. and Sweldens, W., “An Overview of Wavelet Based Multiresolution Analysis,” Society for Industrial and Applied Mathematics, Vol.36, No.3, September 1994, pp.377-412.
[12] Meyer, Y. and Ryan, R. D., Wavelets:algorithms & applications, Society for Industrial and Applied Mathematics, Philadelphia, 1993.
[13] Meyer, Y. and Salinger, D. H., Wavelets and operators, Cambridge University Press, New York, 1992.
[14] Meyer, Y., Wavelets and applications:proceedings of the international conference, Marseille, France, May 1989, Springer Verlag, Berlin; Masson, Paris, 1992.
[15] Misiti, M., Oppenheim, G. and Poggi, J. M., “Wavelet Toolbox,” The Math Works Inc., 1996.
[16] Nakos, G. and Joyner, D., Linear Algebra With Applications, Brooks/Cole Publishing Company, CA, 1998.
[17] Newland, D. E., An introduction to random vibrations, spectral and wavelet analysis, Wiley, New York, Longman Scientific & Technical, Harlow, Essex, England, 1993.
[18] Newland, D. E., “Practical signal analysis: do wavelets make any difference,” ASME Proceedings of Design Engineering Technical Conferences, September 14-17, 1997.
[19] Newland, D. E., “Harmonic Wavelet Analysis,” Proc.R.. Soc. Lond. A, 443, 1993a, pp.203-225.
[20] Newland, D.E., “Wavelet Analysis of Vibration, Part 1:Theory,” ASME Journal of Vibration and Acoustics, Vol.116, October 1994, pp.409-416.
[21] Newland, D. E., “Wavelet Analysis of Vibration,Part 2:Wavelet Maps,” ASME Journal of Vibration and Acoustics, Vol.116, October 1994, pp.417-425.
[22] Newland, D. E., “Some Properties of Discrete Wavelet Maps,” Probabilistic Engineering Mechanics, Vol.9, 1994, pp.59-69.
[23] Palavajjhala, S., Motard, R. L. and Joseph, B., “Process Identification Using Discrete Wavelet Transforms:Design of Prefilters,” AIChE Journal, Vol.42, No.3, March 1996, pp.777-790.
[24] Priebe, R. D. and Wilson, G. R., “Wavelet Applications to Structural Analysis,” IEEE, 1993, pp.205-208.
[25] Rioul, O. and Vetterli, M., “Wavelets and Signal Processing,” IEEE SP Magazine, October 1991, pp.14-38.
[26] Robertson, A. N., Park, K. C. and Alvin, K. F., “Identification of Structural Dynamics Models Using Wavelet-Generated Impulse Response Data,” ASME Journal of Vibration and Acoustics, Vol.120, January 1998, pp.261-266.
[27] Robertson, A. N., Park, K. C. and Alvin, K. F., “Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification,” ASME Journal of Vibration and Acoustics, Vol.120, January 1998, pp.252-260.
[28] Rugh, W. J., Linear System Theory, Prentice Hall , 1996.
[29] Ruskai, M. B., Wavelets and their applications, Jones and Bartlett, Boston, 1992.
[30] Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B., “Natureal frequencies and Dampings identification using wavelet transform: application to real data,” Mechanical Systems and Signal Processing, Vol.11(2), 1997, pp.207-218.
[31] Staszewski, W. J., “Identification of Damping in MDOF Systems Using Time-Scale Decomposition,” Journal of sound and Vibration, Vol.203, 1997, pp.283-305.
[32] Staszewski, W. J., “Wavelet Novelty Measure For Machinery Diagnostics,” ASME Proceedings of Design Engineering Technical Conferences, Setember 14-17, 1997.
[33] Stranf, G. and Nquyen, T., Wavelets and Filter Banks, Wellesely-Cambridge Press, Wellesley, MA, 1996.
[34] Tsatsanis, M. K. and Giannakis, G. B., “Time-Varying System Identification Using Wavelets,” IEEE Transactions on Signal Processing, 1992, pp.125-129.
[35] Tsatsanis, M. K. and Giannakis, G. B., “Time-Varying System Identification and Model Validation Using Wavelets,” IEEE Transactions on Signal Processing, Vol.41, No.12, December 1993, pp.3512-3523.
[36] Vetterli, M. and Kovacevic, J., Wavelets and subband coding, Prentice Hall PTR,Englewood Cliffs,N.J., 1995.
[37] Vetterli, M. and Herley, C., “Wavelets and Filter Banks:Theory and Design,” IEEE Transactions on Signal Processing, Vol.40, No.9, Setember 1992, pp.2207-2232.
[38] Walter, G. G., Wavelets and other orthogonal systems with applications, CRC, Boca Raton, 1994.
[39] Weiss, L. G., “Time-varying system characterization for wideband input signals,” Signal Processing, Vol.55, 1996, pp.295-304.
[40]Young, R. K., Wavelet theory and its applications, Kluwer Acdemic Publishers, Boston, 1993.
[41]李新欉, “小波理論之多尺度分析運用於環境量測信號與雜訊分離之研究,” 新新雙月刊, 第24卷, 第6期, 民85, pp.172-179.
[42]鄭智成, 黃奇, “Spline Wavelets之計算,” 碩士論文, 國立中正大學化學工程所, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top