|
[1]S. Adjerid and E. Flaherty. A moving finite element method with error estimate and refinement for one-dimensional time dependent partial differential equations, SIAM J. Numer. Anal., 1986. [2]S. Adjerid and E. Flaherty. A moving-mesh finite element method with local refinement for parabolic partial differential equations. Comput. Meth. Appl. Mech. Engrg., 1986. [3]D.A. Anderson. Adaptive mesh schemes based on grid speeds., AIAA Paper., 1983. [4]D.C. Arney and J.E. Flaherty. A two-dimensional mesh moving technique for time-dependent partial differential equations. J. Comput. Phys., 1986. [5]J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Engrg., 1972. [6]J. Cash. Mebdfade. Available at http://www.ma.ic.ac.uk/jcash/IVP\_ software/finaldae/readme.html. 1998. [7]C. deBoor. Good approximation by splines with variable knots. ii. Conference on the Numerical Solution of Differential Equations, Lecture Notes in Mathematics, 1973. [8]D.S. Dodson. Optimal order approximation by polynomial spline functions. ph.D. Thesis, Purdue Univ., Lafayette,IN, 1972. [9]E.A. Dorfi and L.O'c. Drury. Simple adaptive grids for 1-d initial value problem. J.Comput.Phys., 1987. [10]E. Hairer and G. Wanner. Radau5. Available at ftp://ftp.unige.ch/pub/doc/math/stiff/radau5.f, 1996. [11]E. Hairer and G. Wanner. Radau. Available at ftp://ftp.unige.ch/pub/doc/math/stiff/radau.f, 1998. [12]R.G.Hindman and J. Spencer. A new approach to truly adaptive grid generation. AIAA Paper 83-0450, 1983. [13]J.M. Hyman and M.J. Naughton. Static rezone methods for tensor-product grids. in Proceedings of SIAM-AMS Conference on Large Scale Computations in Fluid Mechanics,SIAM,Philadelphia, 1984. [14]R.Ludwig J.E. Flaherty, J.M. Coyle and S.F. Davis. Adaptive finite element methods for parabolic partial differential equations. Society for Industrial and Applied Mathematics, Philadephia, PA, 1983. [15]W.M. Lioen J.J.B. de Swart and W.A. van der Veen. Pside. Available at http://www.cwi.nl/cwi/projects/PSIDE/, 1998. [16]K. Miller and R.N. Miller. Moving finite elememts i. SIAM J. Numer. Anal., 1981. [17]L.R. Petzold. DASSL: A Differential/Algebraic System Solver. Available at http://www.netlib.org/ode/ddassl.f, 1991. [18]Y.Ren. Theory and computation of moving mesh methods for solving time-dependent partial differential equations. phD. thesis, Department of Mathematics and Statistics, Simon Fraser University, Burnday,Canada, 1992. [19]Y. Ren and R.D. Russell. Moving mesh techniques based upon equidistribution, and their stability. SIAM J. Statist. Comput., 1992. [20]R.D. Russell and J. Christiansen. Adaptive Mesh Selection Strategies for Solving Boundary Value Problems. SIAM J. Sci. Comput., 1998. [21]Shengtai Li, Linda Petzold, and Yuhe Ren. Stability of Moving Mesh Systems of Partial Differential Equations. SIAM J. Sci. Comput., 1998. [22]A.B.White. On selection of equidistributing meshes for two-point boundary-value problems. SIAM J. Numer. Anal., 1979.
|