跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳正銓
研究生(外文):Cheng-Chuan Chen
論文名稱:利用真空電弧法製作抗高溫氧化之鎳鋁鍍層
論文名稱(外文):Prepartion of Thermal Oxidation Resistant NiAl Thin Film by Vacuum Arc Deposition
指導教授:陳克昌陳克昌引用關係
指導教授(外文):Keh-Chang Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:絕熱塗層鎳鋁合金抗高溫氧化介層真空電弧法熱循環實驗
外文關鍵詞:thermal barrier coating systemNiAl alloythermal oxidation resistancebond coatvacuum arc depositonthermal oxidation cyclic test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
絕熱塗層目前應用在航空用渦輪引擎熱段零件表面以提高超合金使用壽命,然因介層之氧化而使絕熱塗層失效。NiAl合金具有良好的高溫抗氧化性及熱傳導性,可被發展為一新的介層材料。
本實驗利用真空電弧法製備NiAl合金薄膜,以Ni30Al70為靶材,選擇中碳鋼及304不銹鋼為基材,對被覆NiAl合金前後的試片進行熱循環試驗,最後以SEM進行微觀組織的觀察、XRD進行結晶分析及GDOS進行成份及縱深分析,以探討被覆NiAl合金薄膜前後的氧化行為。
實驗結果顯示薄膜主要由顆粒堆疊而成,其成分與靶材相同,成長速率因試片置放位置與靶材呈垂直而僅約2μm/hr,其結晶結構主要為NiAl3相。
經熱循環後之重量變化顯示,碳鋼被覆NiAl合金後,在500℃時,可大幅度改善其抗氧化效果,最多可達15倍,而在800℃則可發揮其良好的傳熱性,避免碳鋼試片因熱量分佈不均而造成破裂。不銹鋼被覆NiAl合金後,無論在500℃或800℃,均可改善其氧化膜剝落的現象,達到保護基材的目地。
在經熱循環後的氧化行為方面,碳鋼原材在500℃時,其所生成的氧化物主要為Fe2O3,800℃時則轉為FeO。被覆NiAl合金後的碳鋼在經500℃熱循環試驗20次後,其組成由NiAl3轉變為NiAl,直到熱循環100次後才生成Fe2O3,明顯延遲了基材發生氧化的時程。不銹鋼原材在500℃熱循環時,主要的氧化物為Fe2O3,而在800℃時,其上的氧化物初期為Fe2O3,後期則轉為Fe3O4。而被覆NiAl合金的不銹鋼試片,在經500℃熱循環試驗20次後,其組成亦由NiAl3轉變為NiAl。在800℃時,經100次熱循環後,才呈現出氧化膜剝落的情況。明顯改善不銹鋼在800℃時的抗氧化性。在本研究中,雖然NiAl薄膜的厚度不足,但仍發揮其抗氧化以及熱傳導的特性,達到保護基材的效果,可為絕熱塗層中介層材料提供另一選擇。
Thermal barrier coatings system is usually applied to gas turbine blade to enhance lifetime, but fail starting with bond coat oxidation. With good thermal oxidation resistance and thermal conduction, NiAl alloy is considered as a new bond coat material.
In this study, we prepare NiAl thin film on carbon steel and 304 stainless by vacuum arc deposition with target composition Ni30Al70 followed by evaluation of oxidation resistance with cyclic oxidation test.SEM was used to observe surface topography, cross sectional morphology and film thickness. XRD was used to characterize microstructure. GDOS was used to identify elemental composition and depth profile.
Experimental results show that the as-deposited thin film has the same composition as the target. The growth rate is as low as 2μm/hr because the growing surface is parallel to the vapor fluxt.NiAl3 structure is identified in the deposited film.
500℃ cyclic oxidation test shows that the weight gain of coated carbon steel is significantly reduce one-fifteenth. While 800℃cyclic oxidation test indicates that the NiAl can prevent the fracture of carbon steel from scale spallation due to film adhesion. Stainless steel with NiAl coating can prevent the spalling of oxide scale at 500℃ and 800℃.
Fe2O3 and FeO is formed as oxide scale on the carbon steel after 500℃and 800℃ cyclic oxidation test, respectively. .The NiAl coated carbon steel however appears NiAl phase without iron oxide formation at 500℃ cyclic oxidation for 20 cycles ,but Fe2O3 appears after 100 cycles. Oxidation of stainless steel at 500℃ is Fe2O3 and becomes Fe3O4. Stainless steel with coating after 20 cycles at 500℃, the composition from NiAl3 change to NiAl . At 800℃, only after 100 cycles the oxidation spalling occurs , this shows the NiAl coating enhance the oxidation resistance of stainless steel.
In summary, the NiAl coating by vacuum arc deposited method shows good oxidation resistance and thermal conduction. This maybe an alternative for a thermal barrier bond coat material.
中文摘要 i
英文摘要 iii
總目錄 v
圖目錄 viii
表目錄 xii
第一章前言 1
第二章文獻回顧 6
2-1介金屬化合物的抗氧化基礎 6
2-1-1良好的熱力學安定性 6
2-1-2 緩慢的成長速率 6
2-1-3 與基材有良好的附著性 8
2-1-4 具備易形成及再形成的能力 8
2-1-5氧化反應的理論模式 10
2-2影響NiAl合金抗氧化性的原因 14
2-2-1 NiAl合金上氧化膜的相 14
2-2-2 NiAl合金的成份 14
2-2-3 其他元素的添加 19
2-3 NiAl薄膜化動機及潛在應用 20
2-3-1面層 22
2-3-2介層 24
2-4使用真空電弧法沉積NiAl合金薄膜的說明 25
2-4-1 真空電弧法原理 25
2-4-2 電弧的產生 26
2-4-3 高品質鍍膜的獲得 28
2-4-4 特性與優點 33
第三章 研究方法 34
3-1 實驗流程 34
3-2 被覆NiAl合金的方法與步驟 34
3-2-1 使用設備 34
3-2-2 設備改裝情形 34
3-2-3 試片準備 38
3-2-4 NiAl靶材 38
3-2-5 NiAl合金被覆程序 38
3-2-5-1 Ar離子轟擊 38
3-2-5-2 NiAl離子轟擊 42
3-2-5-3 被覆NiAl合金 42
3-2-5-4 試片置放情形 42
3-3 熱循環實驗 45
3-4 分析與測試 48
3-4-1 顯微組織觀察 48
3-4-2 晶體結構分析 48
3-4-3 成份及縱深分析 48
第四章 結果與討論 49
4-1 鍍膜微觀組織、晶體分析及成份分析 49
4-2碳鋼的氧化行為 53
4-2-1 熱循環重量變化 53
4-2-2 熱循環後的表面形態、晶體結構及成分分析 56
4-3 不銹鋼的氧化行為 68
4-3-1熱循環重量損失速率 68
4.3.2氧化表面形態、晶體分析及成份分析 71
第五章 結論 85
參考資料 87
1. D. A. Spera and S. J. Grisaffe, NASA Tech. Memo, TMX-2664.
2. R. Sivakumar and B. L. Mordike, Surface and Coating Technology, 37(1989)139-160
3. D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie, London (1992) 88.
4. B. A. Movchan, , JOM-Journal of the Minerals Metals & Materials Society, 48, 11 (1996) 40-45.
5. J. Vetter, O. Knotek, J. Brand and W. Beele, Surface and Coating Technology, 68/69 (1994) 27-31.
6. O. Knotek, E. Lugscheider, F. Loffler, W. Beele, C. Barimani, Surface and Coatings Technology, 74-75 (1995) 118-122.
7. S. A. Leontiev, V. G. Kuznetsov, A. I. Rybnikov, I. V. Burov, Surface and Coatings Technology, 76-77 (1995) 41-46.
8. W. Lih, E. Chang, B. C. Wu, C. H. Chao and A. Peng, Oxidation of Metals, 40, 3-4 (1993) 229-243.
9. W. Lih, E. Chang, B. C. Wu, C. H. Chao, Surface and Coatings Technology, 50, 3 (1992) 277-288.
10. W. Beele N. Czech, W. J. Quadakkers and W. Stamm, Surface and Coatings Technology, 94-5, 1-3 (1997) 41-45.
11. N. Czech, F. Schmitz and W. Stamm, Surface and Coatings Technology, 76, 1-3 (1995) 28-33.
12. W. H. Goward, D. H. Boone and P. G. Moore, Journal of Metals, 32, 8 (1980) 32-32.
13. D. B. Miracle, Acta Metall. Mater. 41,3 (1993) 649-684
14. R. D. Noebe, R. R. Bowman, M. V. Nathal, International Material Review, 38,4 (1993) 193-232
15. 吳人洁, “金屬基複合材料的現狀與展望”, 金屬學報, 33,1,(1997) 78-84
16. T.N. Rhys-Jones , Material Science, 29, 6, (1989) 623-646
17. L. L. Lee, D. E. Laughlin, L. Fang and D. N. Lambeth, IEEE Transactions on Magnetics, 31, 6 (1995) 2728-2730.
18. L. L. Lee, D. E. Laughlin and D. N. Lambeth, IEEE Transactions on Magnetics, 30, 6 (1994) 3951-3953.
19. R. k. Singh, D. Bhattacharya, S. Sharan, P. Tiwari and J. Narayan, Journal of the Materials Research, 7, 10 (1992) 2639-2642.
20. J. H. Westbrook and R. L. Fleischer, ”Intermetallic Componds Principles and Practice Volume 1- Principles”, (1995)977-1016
21. N. Birk and G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, London, 1983
22. P. Kofstad, Elsevier Applied Science Publishers LTD., N. Y.,(1988)
23 K. Hauffe, “Oxidation of Metals”, Plenum Press, New York(1965)
24. S. Chevalier, G. Bonner, J. P. Larpin and J. C. Colson, Oxidation of Metals, 47(1997)53
25. E. Huber and S. Hofman, Surf. Coat. Technol., 68/69(1994) 64
26. T. Kacsich, K. P. Lieb, A. Schapr and O. Schulte, J. Phys: Condens. Matter, 8(1996) 10703
27. S. R. Levine and C. A. Srearns, Advanced Materials Technology, NASA Conf. Publ. 2251 (1982)313-334
28. Wefers, K. and Misra, C., Alcoa Technical Paper, 1987, p. No. 19
29. J. C. Yang, E. Sxhumann, I. Levin and M.Ruhle, Acta Metallurgica Inc.,(1998)2195-2201
30. Rooksby, H. P. and Rooymans, C. J. M., Clay. Min. Bull., 4 (1961) 234
31. Wilson, S., in Proc. Br. Ceramm. Soc.,28,(1979)281
32. M. B. Brumm and H. J. Grabke, Corrosion Science, 33,11 (1992)1677-1690,
33. M. B. Brumm and H. J. Grabke, Corrosion Science, 34,4 (1993) 547-561,
34. Pettit, F. S., Trans. TMS-AIME,239(1967)1296-1299
35. H. J. Grabke , D. Wiemer and H. Viefhaus, Applied Surface Science, 47(1991) 243-250
36. D. Wiemer, H. J. Grabke and H. Viefhaus, Fresenius Journal Analysis Chemistry, 341 (1991) 402-405
37.B.A. Pint, I.G. Wright, W.Y. Lee, Y.Zhang, K. Prubner and K. B. Alexander, Material Science and Engineering, A245, (1998) 201-211
38.J. A. Nesbitt, E. J. Vinarcik, C. A. Barrett and J. Doychak, Material Science and Engineering, A153 (1992)561-566
39.吳柏成, "航空用渦輪引擎8wt%Y-PSZ 絕熱塗層研究" 成功大學礦冶及材料科學研究所碩士論文,1987
40.B. C. Wu, E. Chang, S. F. Chang, S. F. Chang and D. Tu, Journal of American Ceramic Society, 72,2 (1989)212-218
41. B. C. Wu, E. Chang, C. H. Chao and M. L. Tsai, Journal Material Society, 25 (1990)1112-1119
42. 賴冠仁,”冷陰極電弧電沉積之製程技術原理”,科儀新知,第十六期五卷,(1995) 83-95
43.田民波,劉德令,薄膜科學與技術手冊上冊, 機械工業出版社.486-493 (1991) 北京
44. J. A. Thorton, Journal Vacuum Science Technology ,11(1974)666
45.R. Messier,A. P. Giri and R. A. Roy, Journal Vacuum Society Technology ,VII(4)(1984)671
46.翁克偉,"陰極電弧放電被覆鈦鎳薄膜微觀組織之研究", 逢甲大學材料科學研究所碩士論文, 1998
47. J. Koskinen, U. Ehrnst'en, A. Mahiout, R. Lahtinen, J.P. Hirvonen and S.P. Hannula, Surface Coating Technology ,62(1993)356-360
48. K. Akari, H, Tamagaki, T. Kumakiri, K. Tsuji, E. S. Koh and C.N. Tai, Surface Coating Technology, 43/44(1990) 312-323
49. D. M. Sanders and E. A. Pyle., Journal Vacuum Science Technology, A5,4 (1987)2728-2731
50. M. Nishibori., Surface Coating Technology, 52 (1992) 229-233
51. E. Damond, P. Jacquot, E. Denisse and G. Dervieux., Workshop of B.M.I. in Metal Industrial Centre, Koashiung,(1992)
52.趙浩勇、何主亮、陳克昌,表面技術雜誌,153(1995)75-89
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top