|
REFERENCES [1] Arnold, B. C., Balakrishnan, N. and Ngaraja, H. N. (1992), A First Course in Order Statistics, John Wiley & Sons, Inc. [2] Bain, L. J. (1972), "Inferences Based on Censored Sampling From the Weibull or Extreme-Value Distribution," Technometrics, 14, 693-702. [3] Bain, L. J. and Engelhadrt, M. (1991), Statistical Analysis of Reliability and Life- Testing Models, second edition, Marcel Dekker, Inc. [4] Balakrishnan, N. and Cohen, A. C. (1990), Order Statistics and Inference -- Estimation Methods, Academic Press, Inc. [5] Balakrishnan, N. and Chan, P. S. (1992), "Order Statistics from Extreme Value Distribution, I: Tables of Means, Variances and Covariances," Commun. Statist.-- Simula., 21(4), 1199-12117. [6] Bryson, M. C. and Siddiqui, M. M. (1969), "Some Criteria for Aging", Journal of the American Statistical Association, 64, 1472-1483. [7] David, H. A. (1981), Order Statistics, second edition, John Wiley & Sons, Inc. [8] Engelhardt, M. (1975), "On Simple Estimation of the Parameters of the Weibull or Extreme-Value Distribution," Technometrics, 17, 369-374. [9] Engelhardt, M. and Bain, L. J. (1973), "Some Complete and Censored Sampling Results for the Weibull or Extreme-Value Distribution," Technometrics, 15, 541-549. [10] Engelhardt, M. and Bain, L. J. (1974), "Some Results on Point Estimation for the Two-Parameter Weibull or Extreme-Value Distribution," Technometrics, 16, 49-56. [11] Harter, H. L. and Balakrishnan, N. (1996), CRC Handbook of Tables for the Use of Order Statistics in Estimation, CRC Press, Inc. [12] Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (editors) (1983), Understanding robust and exploratory data analysis, John Wiley & Sons, Inc. [13] Huang, D.Y. and Lin, C. C. (1997), "Multiple Decision Procedures for Testing Homogeneity of Normal Means With Unequal Unknown Variances," Advances in Statistical Decision Theory and Applications (eds., S. Panchapakesan and N.Balakrishnan) Birkhauser, Boston. [14] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995), Continuous Univariate Distributions, Vol. I & II, second edition, John Wiley & Sons, Inc. [15] Lawless, J. F. (1981), Statistical Models and Methods for Lifetime Data, John Wiley & Sons, Inc. [16] Lehmann, E. L. (1983), Theory of Point Estimation, John Wiley & Sons, Inc. [17] Mann, N.R. , Scheuer, E.M. , and Singpurwalla, N. D. (1974), Methods for Statistical Analysis of Reliability and life data, John Wiley & Sons, Inc. [18] Nelson, W. (1982), Applied life Data Analysis, John Wiley & Sons, Inc. [19] White, J. S. (1969), "The Moments of log-Weibull Order Statistics," Technometrics, 11, 373-386. [20] Wolfram, S. (1988), MathematicaTM -- A System for Doing Mathematics by Computer, Addison-Wesley Publishing Company. TABLES 1. Values of A(r,s,n) 21 2. Values of for n = 43, r = 0(1)5 and s = 0(1)6 25 3. Values of C.V. of for n = 43, r = 0(1)5 and s = 0(1)6 26 4. Values of C.V. of for n = 19, r = 0(1)5 and s = 0(1)5 27 5. Relative efficiency of variance and asymptotic variance of Trimmed mean under normal distribution 36 6. Simulated data from N(60,100) 37 7. Estimates of normal distribution parameters 38 FIGURES 1. Probability density function of Weibull distributions 12 2. Hazard rate function of Weibull distributions 12 3. Variances of order statistics of standard extreme value distribution 13 4. Lifetime interval of Y(n-s,n)-Y(i:n) 15 5. Standara extreme value distribution Z 17 6. Generalized Tukey lambda distribution T 17 7. Comparison of Z and T 18 8. Histogram of example 1 (5 lasses) 24 9. Histogram of example 1 (7 lasses) 24
|