|
Bagshaw, M. and Johnson, R. A. (1977) Sequential procedures for detecting parameter changes in a time series model. Journal of the American Statistical Association, 72(359), 593-597. Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business and Economic Statistics, 11(1), 81-92. Barry, D. and J. A. Hartigan (1993). A Bayesian analysis for change point problems. Journal of the American Statistical Association, 88(421), 309-319. Basseville, M. and Benveniste, A. (1983) Sequential detection of abrupt changes in spectral characteristics of digital signals. IEEE Trans. On Inf. Theory. 20, 709-723. Bezdek, J. C. (1973) Fuzzy mathematics in pattern classification. Ph. D. thesis, Cornell University, Ithaca, N. Y. Bhattacharya, P. K. and Frierson, F. Jr. (1981) A nonparametic control chart for detecting smll disorders. Ann. Statist. 9, 544-554. Brodsky, B. E. and Darkhovsky, B. S. (1993) Nonparametric methods in change-point problems. Kluwer Academic Publishers. Brown, R. L., Durbin, J. and Evans, J. M. (1975) Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society, B. 37, 149-192. Box, G. E. P. and Tiao, G. C. (1965) A change in level of a nonstationary time series. Biometrika 52, 181-192. Chernoff, H. and Zacks, S. (1964) Estimating the current mean of a normal distribution which is subject to changes in time. Ann. Math. Statist. 35, 999-1028. Davis, L. D., ed. (1991) Handbook of genetic algorithms. Van Nostrand Reinhold. Dufour, J. M. (1982) Recursive stability analysis of linear regression relationships: An exploratory methodology. Journal of Econometrics. 19,31-76. Dufour, J. M. and Ghysels, E. (1996) Editors’ introduction: Recent developments in the econometrics of structural change. Journal of Econometrics. 70, 1-8. Gardner, L. A. (1969) On detecting changes in the mean of normal variables. Ann. Math. Statist. 40, 116-126. Gath, I. and Geva, A. (1989) Fuzzy clustering for the estimation of the parameters of the components of mixtures of normal distributions. Patt. Recog. Lett. 9, 77-86. Girshick, M. A. and Rubin, H. (1952) A Bayes approach to a quality control model. Ann. Math. Statist. 23, 114-125. Hinkly, D. V. (1970) Inference about the change point in a sequence of random variables. Biometrika 57, 1-17. Hinkly, D. V. (1971) Inference about the change point from cumulative sum test. Biometrika 58, 509-523. Holland, J. H. (1975) Adaptation in natural and artificial systems. University of Michigan Press.(Second edition: MIT Press, 1992). Hsu, D. A. (1977) Tests for variance shifts at an unknown time point. Appl. Statist. 26, 279-284. Hsu, D. A. (1979) Detecting shifts of parameter in gamma sequences, with applications to stock price and air traffic flow analysis. J. Amer. Statist. Assoc. 74, 31-40. Hsu, D. A. (1982) A Bayesian robust detection of shift in the risk structure of stock market returns. J. Amer. Statist. Assoc. 77, 29-39. Inclan, C. & Tiao, G. C. (1994). Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance. Journal of the American Statistical Association, 89(427), 913-924. Kander, A. and Zacks, S. (1966) Test procedure for poible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37, 1196-1210. Kao, C. & Ross, S. L. (1995). A Cusum test in the linear regression model with serially correlated disturbances. Econometric Reviews. 14(3), 331-346. Kligiene, N. I. (1973) Solution of problem about changes in unknown parameters of an autoregressive sequence. Litov. Math. Sborn. 2, 217-228. (Russian) Lipeika, A. (1977) Detection of change point moments for an autoregressive sequence, in Stat. Probl. Upr., 24, Inst. Math. Cybern., Lithuan. Acad. Of Sciences, 27-71.(Russian) McLachlan, G. J. and Basford, K. E. (1988) Mixture models, Marcel Dekker. Menzefricke, U. (1981) Presented a Bayesian analysis of a change at an unknown time point. Mottl, V. V. and Muchnik, I. B. (1980) Identification algorithm for the flow of random events. Avtom. Telemekj. 9, 74-80. (Russian) Nikiforov, I. V. (1983) Sequential detection of changes in characteristics of time series. Nauka, Moscow. (Russian) Page, E. S. (1954) Continuous inspection schemes, Biometrika 1, 100-115. Page, E. S. (1955) A test for change in a parameter occurring at an unknown point. Biometrika 42, 523-537. Page, E. S. (1957) Problem in which a change in a parameter occurs at an unknown point. Biometrika 44, 248-252. Sastri, T., Flores, B., Valdes, J. (1989) Detecting points of change in time series. Compu. Open Res. 16, 271-293. Telksnys, L. A. (1969) On application of optimal Bayes algorithm of teaching to determination of moments of changes in properties of random signals. Avtom. Telemekh. 6, 52-58. (Russian) Tsay, R. S. (1986). Nonlinearity tests for time series. Biometrics. 73,461-6. Tsay, R. S. (1990). Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association. 84 ,231-240. Wosley, K. J. (1986) Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika 73, 91-104. Wu, B., Chen, M. H. (1999). Use of fuzzy technique in change periods detection of nonlinear time series. Applied Mathematics and Computation. 99, 241-254. Wu, B. & Hwang, J. (1995). On fuzzy identification of nonlinear time series. Taiwan Economic Association, Annual Conference Proceedings. 169-19. Zadeh, L. A. (1965) Fuzzy sets, Inf. Control. 8, 338-353.
|