跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許德紹
研究生(外文):Te-Shao Hsu
論文名稱:含鎳錯合物聚亞醯胺合成鑑定及其熱穩定性之分析
論文名稱(外文):High Tg Polyimide Copolymers Containing 2,2'-Bipyridyl Units Coordinated With Nickel Malenonitriledithiolate(mnt)
指導教授:鄭如忠陳錦地
指導教授(外文):R.J.JengC.T.Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:101
中文關鍵詞:聚亞醯胺
外文關鍵詞:Polyimide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究已成功置備一系列含有bipyridyl之聚亞醯胺及聚亞醯胺共聚合物。聚亞醯胺及聚亞醯胺共聚合物上具金屬鉗合性之2,2'-bipyridyl配位基與含有鎳金屬錯合物間以配位鍵之鍵結連接形成具有二次非線性性質之有機光學高分子材料。聚亞醯胺及聚亞醯胺共聚合物之玻璃轉移點隨bipyridyl之量降低而降低,但分子量卻隨bipyridyl之量降低而增加。由核磁共振儀之氫光譜測定結果得知,聚亞醯胺共聚合物中α,α'-Bis (4-aminophenyl)-1,4-diisorpropylbenzene (簡稱BAPDIPB)段之反應性高於4,4'-diamino-2,2'-bipyridyl段之反應性。而在溶解度方面,在接上含鎳金屬錯合物後,溶解度會有相當程度的降低。由元素分析結果可知,聚亞醯胺及聚亞醯胺共聚合物和含鎳金屬錯合物反應相當完全。此一系列具有二次非線性光學性質之高分子材料其熱穩定性高於370 ℃,聚亞醯胺及聚亞醯胺共聚合物之玻璃轉移點 (Tg)為260-300℃,而一般應用於二次非線性光學高分子之聚亞醯胺的玻璃轉移點 (Tg)大都低於250 ℃。聚亞醯胺及聚亞醯胺共聚合物接上含鎳金屬錯合物後,玻璃轉移點 (Tg)約增加10-25 ℃,熱裂解溫度(Td)約降低40-140 ℃。

Polyimides containing bipyridyl units were synthesized. The bipyridyl units were sucessfully incorporated by polymerization of bipyridyl diamine andα,α'-Bis(4-aminophenyl)-1,4-diisorpropyl benzene with hexafluoroisopropylidene-2,2'-bisphthalic anhydride. The resulting polyimides' Mws range from 4517 to 42526. The polymers are thermally stable up to 450 oC and show high glass transition temperatures (Tg) in a range between 260-300 oC dependent on the composition of the copolymers. The (2,2'-bipyridyl)(malenonitriledithiolato)Ni(II) containing polyimides possess glass transition temperatures (Tg) in a range between 270-325 ℃. It is important to note that known nonlinear optical polyimides often exhibit Tg's of less than 250 ℃. The 2,2'-bipyridyl containing polyimides in this study show Tg enhancement and better metal-binding capability after the coordination of nickel malenonitriledithiolate chromophore.

Abstract…..……………………………………………………………………………….I
摘要…..………………..…………………………………………………………………II
目錄………………………………………………………………………….…………..III
圖目錄………………………………………………………………………………….VII
表目錄…………………………………………………………...………………………X
一. 緒論…………………………………………………………………………………..1
1-1 前言…………………………………………………………………………………1
1-2 二次非線性光學性質…………………………………………………………..3
1-3 高分子材料之二次非線性光學性能……………………………………….5
1-4 非線性光學材料特性量測的基本原理……………………………………7
1-4-1以非線性光學技術診斷凝態材料特性的理論基礎………………….7
1-4-2晶體或非晶體薄片的非線性光學特性量測……………………………9
二. 文獻回顧及研究動機…………………………………………………………..11
2-1文獻回顧…………………………………………………………………………..11
2-1-1配位金屬錯合物之介紹…………………………………………………….11
2-1-2聚亞醯胺之合成………………………………………………………………12
2-1-3聚亞醯胺之特性………………………………………………………………12
2-2研究動機…………………………………………………………………………..13
三. 實驗…………………………………………………………………………………15
3-1化學藥品…………………………………………………………………………..15
3-2實驗儀器…………………………………………………………………………..19
3-3合成步驟流程……………………………………………………………………21
3-3-1 4.4'-diamino 2,2'-bipyridyl之合成流程…………………………………...21
3-3-2 Model compound之合成流程………..…………………………………….21
3-3-3 (NH3)2Ni(mnt)之合成流程……………....…………………………………...22
3-3-4 Model compound接上Ni(mnt)之合成流程……...……..……………….22
3-4-1 PI A, PI A-Nimnt1-5,PI G之合成流程……………….………………………23
3-4-2 PI B~PI F, PI B-Nimnt~PI F-Nimnt之合成流程………………………….24
3-5 4,4'-diamino 2,2'-bipyridyl之合成……………………………………………25
3-5-1 2,2'-bipyridyl N,N'-dioxide之合成………………………………………….25
3-5-2 4,4'-dinitro 2,2'-bipyridyl N,N-dioxide之合成…………………………....25
3-5-3 4,4'-dinitro 2,2'-bipyridyl之合成……………………………………………26
3-5-4 4,4'-diamino 2,2'-bipyridyl之合成………………………………………….26
3-6聚亞醯胺及接上含Ni(mnt) 聚亞醯胺之合成…………………………..27
3-6-1聚亞醯胺A之合成…………………………………………………..……….27
3-6-2 PI A-Nimnt1之合成……………………………………………………....……27
3-6-3 PI A-Nimnt2之合成……………………………………………………...…….28
3-6-4 PI A-Nimnt3之合成……………………………………………………...…….28
3-6-5 PI A-Nimnt4之合成……………………………………………………...…….28
3-6-6 PI A-Nimnt5之合成……………………………………………………...…….28
3-6-7 PI B之合成……………………………………………………………………..29
3-6-8 PI B-Nimnt之合成………………………………………………...…………..29
3-6-9 PI G之合成………………………….……………………………….…………30
3-6-10 PI C之合成………………………….…………………………….………….30
3-6-11 PI D之合成………………………….…………………………….………….31
3-6-12 PI E之合成………………………….……………………………..………….31
3-6-13 PI F之合成………………………….……………………………..………….31
3-6-14 PI C-Nimnt之合成……………………………………………………..…….32
3-6-15 PI D-Nimnt之合成……………………………………………………..…….32
3-6-16 PI E-Nimnt之合成……………………………………………………..…….32
3-6-17 PI F-Nimnt之合成……………………………………………………..…….32
四.結果與討論…………….………………………………………...……………….33
4-1-1 2,2'-bipyridyl N,N'-dioxide之合成……………………………………….…33
4-1-2 4,4'-dinitro 2,2'-bipyridyl N,N'-dioxide之合成……………………..…….33
4-1-3 4,4'-dinitro 2,2'-bipyridyl之合成…………………………………………...35
4-1-4 4,4'-diamino 2,2'-bipyridyl之合成…………………………….……………36
4-2-1聚亞醯胺A之合成…………………………………………………….……..43
4-2-2聚亞醯胺A接上Ni(mnt)之合成……………………...……….…….…….44
4-2-3聚亞醯胺B~F之合成…………………………………………….….………45
4-2-4聚亞醯胺B~F接上Ni(mnt)之合成…………………………….………….46
4-2-5聚亞醯胺G之合成……………………………………………….…….…….46
4-3聚亞醯胺A~G及接上Ni(mnt)後之溶解度探討……………….…………47
4-4聚亞醯胺B~G之1H-NMR鑑定……………………………………..…………49
4-5聚亞醯胺A~G之Inherent viscosity測定………………………..…………58
4-6聚亞醯胺B~G之分子量測定……………………………………..………….60
4-7-1聚亞醯胺A~G之IR光譜鑑定…………………………………..………….63
4-7-2聚亞醯胺A~F接上Ni(mnt)後之IR光譜鑑定……………….………….63
4-8 元素分析鑑定………………………………..…………………..……………..72
4-9-1聚亞醯胺A~G之DSC熱性質測試………………………….……………74
4-9-2聚亞醯胺A接上Ni(mnt)後之DSC熱性質測試………….…..……….75
4-9-3聚亞醯胺B~F接上Ni(mnt)後之DSC熱性質測試……..………..…...76
4-10-1聚亞醯胺A~G之TGA熱性質測試…………………….…..……………84
4-10-2聚亞醯胺A接上Ni(mnt)後之TGA熱性質測試…….….…………….85
4-10-3聚亞醯胺B~F接上Ni(mnt)後之TGA熱性質測試….….…………...86
五.結論…………………………………………………………………...…………….96
六.參考文獻…………………………………………………………..……..………..98

1. R.G.Hunspergh,Integrated Optics:Theory and Technology,2nd Edition,1985.
2. S.T.Kowel,L.Ye,Y.Zhang,L.M.Hayden,Opt.Eng.,1987,26,106.
3. H.G.Winfriendk,G.J.M.Krij,Appl.Phys.Lett.,1989,55,616.
4. J.Zyss,D.S.Chemla,in Nonlinear optical properties of organic molecules and crystals,Vol.I,D.S.Chemla,J.Zyss,Eds.Academicpress:Orlando,1987;chapter II-1.
5. D.F.Etan,in Materials for Nonlinear Optics,ACS Symposium Series 455, S.R. Marder,J.E.Sohn,G.D.Stucky:Washington,DC.,1983;chapter 8.
6. B.E.A,Saleh,M.C,Teich,"Fundamentals of Photonics",John Wiley & Sons Inc.,New York,1991.
7. A.Yariv,P.Yeh,"Optical Waves in Crystals:Propagation and Control of Laser Radiation",John Wiley & Sons Inc.,New York,1984.
8. R.A.Meyers,"Encyclopedia of Lasers and Optical Technology",Academic Press,San Diego,1991.
9. S.K.Kurtz,Nonlinear Optics in "Laser Handbook"Vol.1,E.F.T,Ed's Arecci,and
E.O.Schulz-Dubois,American Elsevier Publishing,New York,1972.
10. C.Chen,Ann.Rev.Mater.Sci.,1986,16,203.
11. B.L.Davydov;L.D.Dekacheva;V.V.Dunina;M.E.Zhabotinskii;V.F.Zolin;L.G.Kor-eneva,M.A.Samokhina;JEPT Lett.,1970,12,16.
12.B.L.Davydov;L.D.Dekacheva;V.V.Dunina;M.E.Zhabotinskii;V.F.Zolin;L.G.Kor-eneva,M.A.Samokhina;Opt.Spectrosc.,1970,30,274.
13. L.G.Koreneva;V.F.Zolin,B.L.Davydov,Molecular Chemistry in NLO,Nauka;
Moskow,1975.
14. D.F.Eaton,CHEMTECH .,1992,308.
15. P.N.Prasad,D.J.Williams,eds.,"Introduction to Nonlinear Optical Effects in Molecules and Polymers",John Wiley and Sons,Inc.,New York,1991.
16. J.A.Emerson,J.M.Torkelson,eds.,"Optical and Electrical Properties of polymers",MRS proc.,1991,Vol.214.
17. T.Kobayashi,ed.,"Nonlinear Optics of Organics and Semiconductors",Springer
verlag,New York,1989.
18. S.R.Marder,J.E.Sohn,G.D.Stucky,eds.,"Materials for Nonlinear Optics Chemi-
cal Perspectives",ACS Symp.Ser.,1991,455.
19. R.A.Hann,D.Bloor,eds.,"Organic Materials for Nonlinear Optics",Royal Soc.Chem.,London,1989.
20. J.Messier,F.Kajzar,P.Prasad,D.Ulrich,ed.,"Nonlinear Optical Properties",
Kluwer Academic Publishers,Dordrect,1989.
21. G.Khanarian,ed.,"Nonlinear Optical Properties of Organic Materials",SPIE Pr-
Oc.1988,Vol.971.
22. G.R.Meredith,J.G.Vandusen,D.J.Williams,ACS Symp.Ser.,1983,233,109.
23. D.M.Walba,M.B.Ros,N.A.Clark,R.Shao,M.G.Robinson,J.Y.Liu,K.M.John ,D. Doroski,J.Am.Chem.Soc.,1991,113,5471.
24. F.Tournilhac,J.F.Nicoud,J.S.Espci,P.Weber,D.Guillon,A.Skoulios,Liquid Cr
-ystals.,1987,2,55.
25. J.Tsibouklis,A.R.Werninck,A.J.Shand,G.H.Wilburn,G.H.W.Liquid Crystals.,
1988,3,1393.
26. H.L.Hampsch,J.Yang,G.K.Wong,J.M.Torkelson,Polymer Communications.,
1989,30,40.
27. H.L.Hampsch,J.Yang,G.K.Wong,J.M.Torkelson,Polymer Communications.,
1988,21,528.
28. H.L.Hampsch,J.Yang,G.K.Wong,J.M.Torkelson,in"Growth,Characterization
,and Applications of Laser Host and Nonlinear Crystals",J.T.Liu,ed.,SPIE,
1989,268.
29. H.L.Hampsch,J.Yang,G.K.Wong,J.M.Torkelson,Macromolecules.,1990, 23,
3640.
30. H.L.Hampsch,J.Yang,G.K.Wong,J.M.Torkelson,Macromolecules.,1990, 23,
3648.
31. B.K.Mandel,Y.M.Chen,R.J.Jeng,T.Takahashi,J.C.Huang,J.Kumar,S.Tripathy
,Eur.Polym.J.,1991,27,235.
32. H.L.Hampsch,J.M.Torkelson,S.J.Bethke,S.G.Grubee,J.Appl.Phys.,1990,67,
1037.
33. S.L.Stupp,H.C.Lin,L.S.Li,Science.,1993,259,59.
34. S.L.Stupp,H.C.Lin,D.Wake,Chem.Mater.,1992,4,947.
35. B.K.Mandal,J.Kumar,J.C.Huang,S.Tripathy Makromol.Chem.,Rapid Commun
,1990,12,63.
36. B.K.Mandal,Y.M.Chen,J.Y.Lee,J.Kumar,S.Tripathy,Appl.Phys.Lett.,1991, 58,
2459.
37. N.E.Ashcroft,N.D.Mermin,Solid State Physics,Holt,New York,1976.
38. C.Flytzanis,in Quantum Electronics:A Treatise,1A:Nonlinear Optics,pp.9-207,
Eds.H.Rabin,C.L.Tang Academic Press,Inc.New York,1975.
39. Y.R.Shen,The Principles of Nonlinear Optics,John Wiley and Sons,Inc.New
York,1986.
40. P.N.Butcher,D.Cotter,The Elements of Nonlinear Optics,Cambridge Univ-
ersity Press Cambridge,U.K.,1990.
41. N.Okamoto,Y.Hirano,J.Q.Sugihara,Opt.Soc.Am.,1992,B9,2083.
42. N.Paras,J.Williams,introduction to Nonlinear Optical Effects in Molecules and
Polymer,John Wiley and Sons,Inc.New York,1991.
43. H.Konig,R.Z.Hoppe,Anorg.Allg.Chem.,1978,439,71.
44. S.R.Marder,J.W.Perry,Socience.,1994,263,1706.
45. S.Gilmour,R.A.Montgomery,S.R.Marder,L.T.Cheng,A.K.Y.Jen,Y.Cai,J.W.Perry
,L.R.Dalton,Chem.Mater.,1994,6,1603.
46. R.Dagani,Chem.Eng.News.,1996,4,22.
47. C.T.Chen,S.Y.Liao,K.J.Lin,L.L.Lai,Adv.Mater.,1998,10,334.
48. C.T.Chen,S.Y.Liao,K.J.Lin,C.S.Chen,Inorg.Chem.,1998,38,2734.
49. Keisuke Kurita,Roy L.Williams,Journal of Polymer Science.,1973,11,3125.
50. G.H.Hsiue,J.K.Kuo,R.J.Jeng,Chem.Mater.,1994,6,884.
51. P.E.Cassidy,Thermally Stable Polymer.Marcel Dekker,New York,1980,Chap- ter 4.
52. J.W.Jackons,Br.Polym.J.,1980,12,54.
53. B.P.Griffin,M.K.Cox.,Br.Polym.J.,1980,12,147.
54. C.E.Sroog,Prog.Polym.Sci.1991,16,561;J.Polym.Sci.,Marcromol.Rev.,1976,11,161.
55. C.E.Sroog,A.L.Endrey,S.V.Abramo, C.E.Berr,W.M.Edwards,K.L.Olivoer,J.
Polym.Sci.,1965,3,1373.
56. A.M.Wilson,in 'Polyimides:Synthesis,Characterization,and Application.' Vol.2,
Plenum Press,New York,1984,715.
57. R.J.Jensen,J.P.Cummings,H.Vora,IEEE Trans.,Comp.Hybrids Manufact. Technol.CHMT., 1984,7,384.
58. C.Feger,C.Feger,in 'Multichip Module Technologies and Alternatives',Van Nostrand Reinhold,New York,1993.
59. M.I.Bessonov,M.M.Koton,V.V.Kudryavtsev,L.Laius,'Polyimides', Consultants
Bureau,New York,1987.
60. D.Wilson,H.D.Stenzenberger,P.M.Hergenrother,'Polyimides',Chapman and Hall,New york.,1990.
61. N.Sekiguchi,Japan Patent.,1968,6,813.
62. N.D,Ghatage,D.K,Dandge,DieAngew. Makro.Chem ,1978, 66,67.
63. R.A.Meyer,J.Polym.Sci,Al.,1969,7,2757.
64. M.Wittmer,J.Vac.Sci.Techno.,1984,A2,273.
65. P.G.Simpson,A.Vinciguerra,J.V.Quagliano,Inorg. Chem.,1962,66,283.
66. J.E.Baggott,M.J.Pilling,J.Chem.Soc.Dalton trans.,1985,2,247.
67. M.Gerhand,H.Francis,J.Am.Chem.Soc.,1958,80,2745.
68. K.R.Seddon,J.E.Turp,J.Org.Chem.,1983,48,283.
69. C.O.Okafor,J.Org.Chem.,1973,38,4383.
70. P.Solvenko,S.Branko,T.Miha,Synthesis.,1980,129.
71. Z.Li,P.Zhu,L.Wang,J.Appl.Polym.Sci.,1992,44,1365.
72. M.Y.Jeong,T.K.Lin,Chem.Mater.,1999,11,218.
73. D.M.Burland,R.D.Miller,C.A.Walsh,Chem.Rev.,1994,94,31.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文