跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許碩文
研究生(外文):Shou Wen Hsu
論文名稱:電解沉積氧化鋁於鈷鉻鉬合金上之研究
論文名稱(外文):The Study of Electrolytic Al2O3 Coating on Co-Cr-Mo Alloy
指導教授:顏秀崗顏秀崗引用關係
指導教授(外文):Yen S. k.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:129
中文關鍵詞:電解沉積氧化鋁人工關節
外文關鍵詞:electrolyticaluminaCo-Cr-Mo alloyhip prosthesis
相關次數:
  • 被引用被引用:8
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本實驗是在硝酸鋁溶液中,利用電解沈積的方法,將氧化鋁薄膜沈積於F-75鈷基合金表面上。藉由控制不同的電化學參數(濃度、電位、時間),和不同的燒結條件後,決定適當的鍍膜條件,並利用恆定電位儀、OM、SEM/EDS、XRD、刮痕試驗機,探討這些鍍膜之特性。
由XRD的結果發現,電解沉積氧化鋁鍍膜於 CoCrMo 合金上之相變化過程如下:
由循環極化實驗結果顯示,氧化鋁鍍層經適當溫度燒結後,其極限電流密度較基材低,而腐蝕電位、保護電位均較基材高,可提高抗蝕性。
以燒結溫度T6-t3的氧化鋁鍍膜的刮痕試驗SEM圖,計算鍍膜在CoCrMo合金上之荷重應力可克服4456MPa,大於此材料之降伏強度(450 Mpa),此應力相當於一般人體運動中髖骨荷重之13倍,高於氧化鋯。
磨耗實驗中氧化鋁鍍膜及基材與超高分子量聚乙烯(UHMWPE)在荷重10N下進行往復磨耗1800次,其UHMWPE之磨耗量具氧化鋁鍍膜為基材之1/10。
Abstract
The Electrolytic deposition of alumina (Al2O3) coatings on F-75 CoCrMo alloy was conducted in an aqueous solution of alumina-nitrate[Al(NO3) 3]. The better condition of alumina coatings on CoCrMo alloy was determined by controlling different elertrical-chemical parameter ( concentration, potential, time ) and different sintering conditions; and its characterization was conducted by using Potentiostat, OM, SEM/EDS, XRD, wear test and scratch test .
In the XRD experiment, it can be concluded that the phase transformation of the alumina-film has two paths:
Through the cycle polarization test in Hanks'' solution, we can find the corrosion potential and protection potential of the alumina-film is higher than the substrate . The alumina-film after annealing below T5 reveals less corrosion current density than substrate. We conclude that the alumina film has a better quality in corrosion.
SEM/EDS observations after the scratch tests show that the alumina-films on CoCrMo alloy can load a stress over the yield strength (450MPa) of CoCrMo which is 13 times of the loading of hip joints during gait(35Mpa), and is higher than ZrO2 coated film.
The wear tests show that the alumina-films worn by UHMWPE with a load stress of 50.9 MPa, for 1800 wear cycles, were undestroyed on the alloy substrate. Besides, the wear loss of UHMWPE to the Al2O3 coated specimen is only 1/10 of that to the uncoated.
總 目 錄
中文摘要................................................I
英文摘要...............................................II
總目錄.................................................IV
圖目錄.................................................VI
表目錄.................................................IX
第一章緒論 1
1-1生醫材料 1
1-1-1 生醫材料性質 1
1-1-2 骨科植入材選擇 2
1-2人工關節置換 5
1-3研究動機 7
第二章文獻回顧 9
2-1鈷鉻合金 9
2-1-1鈷鉻合金之發展及性質 9
2-1-2 腐蝕行為......................................11
2-1-3鈷鉻合金在生醫上之應用 12
2-2氧化鋁陶瓷 14
2-2-1氧化鋁性質 14
2-2-2結晶質氧化鋁水合物 15
2-2-3氧化鋁過渡相 16
2-2-4氧化鋁晶體結構 17
2-3磨耗 21
2-3-1磨耗機構 21
2-3-2實驗室之研究 23
2-4極化 27
2-4-1活性極化 27
2-4-2濃度極化 28
2-4-3電阻極化 30
2-5電解沉積 31
2-6孔蝕 32
2-7交流阻抗分析 36
第三章實驗方法與步驟 40
3-1試片準備與前處理 40
3-2陰極極化 41
3-3電解沉積 41
3-3.1最佳沉積電位 41
3-3.2最佳沉積時間 41
3-4乾燥 42
3-5燒結 42
3-6X光繞射(XRD)分析 42
3-7電化學動態極化試驗 44
3-8電化學交流阻抗測試 45
3-9刮痕(scratch)試驗 46
3-10磨耗試驗 46
3-11 OM、SEM / EDS 表面形態觀察 47
3-12浸泡實驗 47
第四章結果與討論.....................................48
4-1陰極極化實驗 48
4-2電解沉積製程參數之探討 50
4-2.1最佳沉積電位 50
4-2.2沉積時間對沉積薄膜之影響.......................51
4-2.3溶液濃度對沉積薄膜之影響.......................52
4-2.4二次電解沉積對沉積薄膜之影響...................53
4-3乾燥與燒結 53
4-4X光繞射分析 54
4-5動態極化測試 57
4-6交流阻抗測試 63
4-7刮痕試驗 63
4-8磨耗試驗 64
4-9浸泡實驗 66
第五章結論 67
參考文獻 69
圖 目 錄
圖1-1 髖關節細部組織功能圖 76
圖2-1 CoCr合金相圖 10
圖2-2 濃度極化控制之溶液中靠近電極表面之H+濃度分佈 29
圖2-3 影響濃度極化之溶液因素 30
圖2-4 沉積薄膜與基材鍵結示意圖 77
圖2-5 金屬基材在電解液中典型的模式 37
圖2-6 電化學交流阻抗測試結果圖型 38
圖3-1 實驗操作流程圖 78
圖3-2 試片前處理的操作流程圖 79
圖3-3 實驗三電極系統圖 80
圖4-1.1在C2濃度硝酸氧化鋁溶液中的陰極極化曲線圖(E-log1) 81
圖4-1.2在C2濃度硝酸氧化鋁溶液中沉積後經T4-t3燒結之表面形態EDS mapping圖(a)氣泡(b)均勻處 82
圖4-1.3電解沉積氧化鋁之步驟程序 83
圖4-2.1在C2濃度硝酸氧化鋁溶液中不同沉積條件的氧化鋁膜SEM圖(a)較佳(b)較差 84
圖4-2.2在C2濃度硝酸氧化鋁溶液中不同沉積時間的氧化鋁膜OM比較圖(a)d1(X500)(b)d6(X500) 85
圖4-2.3(a)五種不同濃度的陰極極化曲線圖 86
圖4-2.3(b)在C2濃度硝酸氧化鋁溶液中沉積d3時間的氧化鋁膜SEM圖X7500(c)C3濃度X5000 87
圖4-2.4(a)Co-Cr-Mo合金在C3濃度硝酸氧化鋁溶液中二次電解沉積陰極極化曲線比較圖 88
圖4-2.4(b)在C3濃度硝酸氧化鋁溶液中二次電解沉積經T4-t3燒結氧化鋁膜表面形態SEM圖 89
圖4-3.1在C3濃度硝酸氧化鋁溶液中沉積後表面型態SEM圖(a)燒結前(b)燒結後 90
圖4-3.2電解沉積氫氧化鋁陰乾後之TGA/DTA曲線圖 91
圖4-3.3在C2濃度硝酸氧化鋁溶液中沉積d3後並在T2溫度燒結不同時間後的氧化鋁膜SEM圖(a)t3(b)t4 92
圖4-3.4在C2濃度硝酸氧化鋁溶液中沉積d3後並在不同溫度燒結t3後的氧化鋁膜SEM圖(a)T5(b)T6 93
圖4-3.5在C2濃度硝酸氧化鋁溶液中沉積後並在不同溫度燒結之氧化鋁膜500倍OM圖(a)T2燒結t3(b)T4燒結t3(c)T5燒結t3(d)T6燒結t3 94
圖4-4(a)基材之XRD分析 95
圖4-4(b)氧化鋁鍍膜於不同溫度燒結t3之XRD分析 96
圖4-4(c)氧化鋁鍍膜於T2溫度燒結不同時間之XRD分析 97
圖4-4(d)氧化鋁鍍膜於T3溫度燒結不同時間之XRD分析 98
圖4-4(e)氧化鋁鍍膜於T4溫度燒結不同時間之XRD分析 99
圖4-4(f)氧化鋁鍍膜於T5溫度燒結不同時間之XRD分析 100
圖4-4(g)氧化鋁鍍膜於T6溫度燒結不同時間之XRD分析 101
圖4-4(h)氧化鋁鍍膜相變化過程示意圖 102
圖4-5(a)氧化鋁pH位勢(Pourbaix diagrams)圖 103
圖4-5(b)在C2濃度溶液中沉積經T2-t3燒結與未處理試片於 Hanks''水溶液中之循環極化曲線(轉折電位0.8v) 104
圖4-5(c)在C2濃度溶液中沉積經T3-t3燒結與未處理試片於 Hanks''水溶液中之循環極化曲線(轉折電位0.8v) 105
圖4-5(d)在C2濃度溶液中沉積經T4-t3燒結與未處理試片於 Hanks''水溶液中之循環極化曲線(轉折電位0.8v) 106
圖4-5(e)在C2濃度溶液中沉積經T5-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位0.8v) 107
圖4-5(f)在C2濃度溶液中沉積經T6-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位0.8v) 108
圖4-5(g)在人工模擬體液中經循環極化(轉折電位0.8v)後SEM之影像(a)未處理試片(b)被覆氧化鋁經T5燒結後之試片(循環極化時較易吸附H+) 109
圖4-5(h)在C2濃度溶液中沉積經T2-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位1.0v) 110
圖4-5(i)在C2濃度溶液中沉積經T3-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位1.0v) 111
圖4-5(j)在C2濃度溶液中沉積經T4-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位1.0v) 112
圖4-5(k)在C2濃度溶液中沉積經T5-t3燒結與未處理試片於Hanks''水溶液中之循環極化曲線(轉折電位1.0v) 113
圖4-5(l)在C2濃度溶液中沉積經T5溫度燒結,氧化鋁膜較薄區域產生微裂縫型態SEM圖 114
圖4-5(m)在C2濃度溶液中沉積經T5溫度燒結,經循環極化後氧化鋁膜破裂表面型態SEM圖 114
圖4-5(n)電解沉積氧化鋁膜腐蝕機構示意圖 115
圖4-5(o)在人工模擬體液中經循環極化(轉折電位1.0v)後SEM之影像(a)未處理試片(b)被覆氧化鋁經T2燒結後之試片 116
圖4-5(p)在C2濃度硝酸氧化鋁溶液中沉積後並在T4溫度燒結,經循環極化後氧化鋁膜較厚區域EDS mapping圖 117
圖4-5(q)在C2濃度硝酸氧化鋁溶液中沉積後並在T2溫度燒結,經循環極化後氧化鋁膜較薄區域EDS mapping圖 118
圖4-6(a)經不同溫度燒結後之Nyquist曲線比較圖 119
圖4-6(b)經不同溫度燒結後之Bode-impedance曲線比較圖 120
圖4-6(c)經不同溫度燒結後之Bode-phase曲線比較圖 121
圖4-7.1氧化鋁鍍膜經T6-t3燒結後刮痕試驗之末端EDS linescan圖 122
圖4-7.2氧化鋁鍍膜刮痕試驗曲線比較圖(a)經T4-t3(b)經T6-t3燒結 123
圖4-7.3氧化鋁鍍膜經T6-t3燒結後刮痕試驗SEM圖(a)前段(b)中段 124
圖4-7.4刮痕試驗末端之SEM圖(a)未處理試片(荷重30N)(b)氧化鋁鍍膜經T6-t3燒結後試片(荷重35N) 125
圖4-7.5氧化鋁鍍膜經T6-t3燒結後刮痕試驗之EDS mapping圖 126
圖4-8.1磨耗試驗之SEM圖(a)未處理試片(b)氧化鋁鍍膜經T2-t3燒結後之試片 127
圖4-8.2氧化鋁鍍膜經T2-t3燒結後與UHMWPE磨耗試驗之EDS mapping影像 128
圖4-9二種試片浸泡在Hanks''溶液中表面腐蝕情形之SEM圖(a)未處理試片(b)沉積後經T2-t3燒結試片 129
表 目 錄
表1-1 人體血漿組成及濃度 4
表1-2 外科用生醫植入物的物理與機械性質 5
表1-3 各類材料體內磨耗速率 8
表2-1 氧化鋁、氧化鋯及鈷鉻鉬合金之性質比較表 14
表2-2 氧化鋁水合物及氧化鋁之結晶形態及性質 20
表2-3 UHMWPE對不鏽鋼及氧化鋁之針對盤測試磨耗因子 25
表2-4 UHMWPE對不鏽鋼、氧化鋁及氧化鋯之針對板測試磨耗因子 25
表2-5 人工全髖關節(THR)各種組合磨耗情形 26
表3-1 F75 Co-Cr-Mo合金之化學成份分析 40
表3-2 體外試驗人工模擬體液及其成份 44
表4-1 極化區電位 48
表4-2 最佳沉積電位 51
表4-3 沉積時間對薄膜的影響 51
表4-4 最佳沉積時間 52
表4-5 循環極化測試結果 62
表4-6 磨耗測試結果 65
參考文獻
[1] David S. Crimmins, “The Selection and Use of Materials for Surgical Implants”, Journal of Metals (1969), p.41.
[2] Biomaterials Medical Device And Tissue Engineering ,Frederick. H. Silver, PhD.,p113-p119.
[3] Marcel Pourbaix, “Electrochemical corrosion of metalic biomaterials”, Biomaterials Vol.15 May (1988) .
[4] Anna C. Fraker, “Corrosion of Metallic Implant and prosthetic device ”,ASM handbook.
[5] J.Walczak, F. Shahgaldc, “In vivo corrosion of 316L stainless steel hip implant morphology and elemental compositions of corrosion products ”, Biomaterials., 19(1998), p.229-273.
[4] G. k. Mckee, “ total hip replacement─past , present and future”, biomaterials 1982, vol3, July .
[7] 姚信字,黃清安,許文蔚, “失效之金屬基人工膝關節分析”,中國材料科學學會,J08,1998.
[8] S. B. Goodman , p.5, Total Joint Arthroplasty Symposium, Chang Chung Memorial hospital, december 1996.
[9] S. B. Goodman , fornasier, V. L. Lee, kei, J. Biomed. Mater. Res. 24,517,1990.
[10] Mark J. Filiaggi, Robert M. Pilliar, Raisa Yakubovich, Galina Shapiro, “Evaluating Sol-Gel Ceramic Thin Films for Metal Implant Applications. I. Processing and Structure of Zirconia Films on Ti-6Al-4V”, J. Biomed. Mater. Res., Vol. 33 (1996), p.225-238.
[4] 汪建民主編“ 陶瓷技術手冊(下)” 中華民國產業科技發展協會1994,P1034.
[12] A.T. Kuhn, “Corrosion of Co-Cr Alloys in aqueous environments”, Biomaterials 1981,vol2 April.
[13] R.A. Birchonan and In-Seep Lee, “Surface modification of biomaterials through noble metal ion implantation” ,Journal of Biomedical Materials Research,vol,24,329-318(1990).
[14] P. R. Mezger, M. M. A. Vrijhoef, S. M. Newman and E. H. Greener, “The corrosion resistance of a new Co —Cr—Mo alloys —Ceramic ”, Journal of Oral Rehabilitation, 1988, vol .15 ,P421-428.
[15] M. M. Tensi, H. Hooputra, W. Weinfurtuer, and H. Mayer, “Optimizing the corrosion fatigue properities of Co-Cr-Mo Hip Joint’’,JOM, jan.1995.
[16] HS. Dobbs and M.J. Minski, “Metal ion release after total hip replacement”, Biomaterials, Vol. 1 (1980), October.
[17] Hallie E. Placko, Stanley A. Brown, “Effect of microstructure on the corrosion behavior of Co-Cr porous coating on orthopaedic implants”, J. Biomed. Mater. Res., Vol. 39 (1998), p.292-299.
[18] 詹鴻政,許學全,顏秀崗, “電解沉積氧化鋯於牙科用鈷鉻合金之研究”,中國材料科學學會,1997年度年會論文集(J),p.9-12 (1997).
[19] Stanley A. Brown, Lillicon J. , “In vitro and vivo metal ion release”, J. of Biomed. Mater. Ress.,vol.22 ,321-338(1988).
[20] M. Semlitsch , and H. G. Willert, “Clinical wear behavior of UHMWPE cups paired with metal and ceramic ball heads in comparison to metal on metal pairings of hip joint replacements,”Proc lasth Mech Engrs vol. 211 part2.
[21] Shigeji Taniguchi, “Thermal stability of Al2O3 Coating on SUS 304 stainless steel”,Corrosion Engineering 46 189-197 (1997).
[22] Yan Dianran, He Jining, Wu Jianiun, Qiu. Wangi, Ma Jing, “The corrosion behavior of a plasma spraying Al2O3 ceramic coating in dilute HCl solution",Surface and Coatings Technology 89 (1997) 191-195.
[23] A. Chanda, “Wear and Friction Behavior of UHMWPE-Alumina combination for Total Hip Replacement’’, Ceramics International 23 (1997) 437-447.
[4] 黃啟祥,林江財等主編,“陶瓷技術手冊(下)”, 中華民國產業科技發展協會,1994,P683-715.
[25] C. Y. Hung, 1998 Annual Conference of the Chinese Society for Ceramic Science , p127-130 (1998).
[26] B. C. Lipppens, “Structure and Texture of Alumina”, thesis, Delft U.of Technology, the Netherands (1961).
[27] G. D. Chukin, “Mechanism of the thermal decomposition of Boehmite and a model of the aluminum oxide structure ’’, Kinet Catal ,30 (1989) 55-62.
[28] H. P. Rooksby, “The X ray indentification and structure of clay minerals’’,ed. G. W. Bindley.The Mineralogical Soc. Brit. Lon.(1951).
[4] Ting C. Chou and Tai G. Nieh,. “Nucleation and concurrent anomalous grain growth of α-Al2O3 during γ→αphase transformation”,J. Am. Ceram. Soc. 74(9)2270-79 (1991).T.
[30] R. G. BISWAS, J. L. WOODHEAD, A.K.BHATTACHARAYA, “Corrosion studies of inorganic Sol-gel alumina coatings on 316 stainless steel",Journal of Materials Science Letters 16 (1997) 1628-1633.
[31] 石殿明, “PE與金屬表面滑動之磨擦與磨耗特性之研究”,國立中興大學機械研究所碩士論文.(1996)
[32] R. A. POGGIE, A. K.MISHRA, J. A. DAVIDSON, “Three body abrassive wear behavior of orthopaedic implant bearing surface from titanium debris ”, J.of materials science 5 (1994), p.387-392.
[33] Cunan Dowson, “Friction and Wear of Medical Implants and Prosthetic Devices”,ASM Handbook V1.18.
[34] Standard Practice for Reciprocating Pin-on-Flat Evaluation of Friction and wear properties of PE materials for use in Total Joint Prostheses, F732,ASTM.
[35] T. Saito, Y. Imada, F. Hovda, “Tribological study of chemical states of protective oxide film after sliding in humid atmosphere and aqueous solution ”, J. of Tribology, October 1998 , Vol. 119/613.
[36] R. A. Sicva, M. A. Barbsa and R. Vilar, O. Conde, “Electrochemical studies of laser —treaed Co-Cr-Mo alloy in a simulated physiological solution ”, Journal of Materials science, 5 (1994), p.353-356.
[37] M. J. Filiaggi, Robert M. Pilliar, J. Biomed. Mater. Res., Vol. 33(1996), p.225-238.
[38] Praveen Kumar , Masanori Oka, Ken Lkeuchi , and Yoshihiko Kotoura, J. of Biomedical Materials Researsh,25(1991) P.813-828
[39] A. Wang ,A.Essner, C. Stark and J.H. Dumbleton, “comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”,Biomaterials 17(1996) 865-871.
[40] S.Lerouge, O.Huk, L.H. Yahia and L.Sedel, “Characterization of in vivo wear debris from ceramic-ceramic total hip arthroplasties”, Journal of Biomedical Materials Research, vol.32,627-633(1996).
[41] Weley P. P., S. A. Johnson, J. Biomed. Mater. Res. 39 229-233, 1998.
[42] D.Dowson., “A Comparative study of the performance of metalic and ceramic femoral head components in total replacement hip joints”, wear 190(1995)p171-183.
[43] H.-J. Fruh, G. Willmann, “Tribological investigations of the wear couple alumina-CFRP for total hip replacement’’, Biomaterials 19(1998) 1145-1150.
[44] DENNY A. JONES., “Principles and prevention of corrosion”, Maxwell Macmillan International Edition (1992).
[45] L. Galor, I.Silberman,and R. chain, “Electrolytic ZrO2 Coatings”,J.Electrochem. Soc. ,vol.138 ,no7, July.1991 p1939.
[46] S. K. Yen and C. F. Lin, 1998, "Adhesion and Polarization Charactenistic in 0.6M NaCl Aqueous Solution of Electrolytic ZrO2 Coating on Ti-6Al-4V",Chinese J. of Medical and Biological Engineering, Vol.18, No.1, p.53-58
[47] S. K. Yen and T. Y. Huang, 1998, "The Characterization of The Electrolytic ZrO2 Coating on Ti-6Al-4V", Material Chemistry and Physics, Vol. 6, p.214-221(SCI)
[48] H. C. Hsu and S. K. Yen, 1999,"Evaluation of Metal Ion Release and Corrosion Resistance of ZrO2 Thin Coating on the Dental Co-Cr-Mo Alloys" Dental Materials,Vol.14, p.339-346 (SCI)
[49] S. K. Yen 1999, “An Electrolytic ZrO2 Coating on AISI 316L Stainless Steel”, J. Electrochem. Soc., Vol. 146, No. 4, p. 1392-1397
[50] R. Chaim, G. Stark, L. Gal-Or and H. Bestgen,J. Mater. Sci., Vol.29, P.6241-6248(1994).
[51] C. C. Chang and S. K. Yen, 1998, "Studies on Preparation of Al2O3 Coatings on Mar-M247 Superalloy by Electrolytic Deposition" Proceeding of 1998 Annual Conference of the Chinese Society for Ceramic Science, p.52
[52] B. Y. WU and A.S.T. Chiang , Chinese Journal of Materials Science, Vol. 28, No.3 ,pp169-181(1996).
[53] K. G. Weil, D. Menzel, Z. Electrochem.,vol. 63, p669(1959). Jay R.Goldberg, Jeremy L.Gilbert, “Electrochemical response of Co—Cr—Mo alloys to high speed fracture of its metal oxide usinganelectrochemical scrach test method” , JOHN WILEY & SONS ,INC .J.Biomed.Mater. Res.37,421-431,1997.
[54] M. A. Heine, M. J. pryor, J. Electrochem. Soc. Vol. 110, p. 1205 (1963). Aziz I. Asphahani, “Corrosion of cobalt-base alloy ”,ASM handbook. (1996), p.11.
[55] T. P. Hoar ,Trans. Faraday Soc. Vol. 45, p.683(1949).
[56] C. Y. Chao, L. F. Lin, D. D. Macdonald, J. Electrochem. Soc. ,vol. 128,p.1187 (1981).
[57] A. J. Bard, and L. R. Fanlkner, “Electrochemical Method Fundamentals and Applications’’, John Wiley & Sons, 350(1890).
[58] 陳惠琴,“電化學阻抗頻譜學對鈦金屬鈍態膜之研究’’, 國立中興大學材料研究所碩士論文.(1996)
[59] Z. Szklarska-Smialowska, “Pitting corrosion of metals” National Association of corrosion Engineers (1986).
[60] Moncoffre et al. “Grazing Incidence X-Ray Diffraction of an AISI 1006 Nitrogen Implanted Steel,”Surf. Inter. Anal., 9, 139-143, 1986
[61] F. Mansfeld, “Detection and monitoring of localized corrosion by EIS”, Electrochem.Impedance:Analysis and interpretation,J. R. Scully,1993, pp297-312.
[62] Y. S. Zhau, M. Ohashi, K. Ikeuchi, “Start up and steady state friction of alumina against alumina”, Wear 210 (1997) 112-119.
[63] JOON BU PARK,“Biomaterials Science and Engineering”, college of Engineering,U. of lowa ,PLENUM PRESS NEW YORKAND LONDON.
[64] 張正君, “電解沈積氧化鋁於MAR-M247超合金上之研究”,國立中興大學材料研究所碩士論文.(1998)
[65] 詹鴻政, “電解沈積氧化鋯於生醫用CoCrMo合金上之研究”,國立中興大學材料研究所碩士論文.(1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top