跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳光兆
研究生(外文):Kuang-Chao Chen
論文名稱:DHEA之抗氧化性及毒性:在大鼠中與維生素E之相互作用以及對HepG2細胞之影響
論文名稱(外文):The antioxidative activity and toxicity of DHEA: the interaction between DHEA and Vit. E in ratsand the effect of DHEA on HepG2 cells
指導教授:胡淼琳胡淼琳引用關係
指導教授(外文):Miao-Lin Hu Ph.D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:112
中文關鍵詞:去氫表雄固酮維生素E抗氧化性毒性
外文關鍵詞:DHEAvitamin Eantioxidativetoxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
DHEA是男女性賀爾蒙的前驅物,其含量的下降或不足可能與人體許多慢性病和老化有關。本實驗主要的目的是探討補充DHEA後,其在大鼠各主要器官的分佈、累積、抗氧化或助氧化作用以及毒性。作法是將DHEA (0、50及100 mg/kg diet) 混合到維生素E (0及30 IU/kg diet) 的飼料中餵食大鼠6週。
結果顯示餵食DHEA 6週並未影響大鼠體重和器官之重量。缺乏Vit. E之大鼠,其血漿中DHEA含量有顯著增加 (p<0.001)。在腎上腺與腦中,不論有無餵食Vit. E,DHEA含量與其劑量成反比。缺乏Vit. E的大鼠,其血漿中GPT的活性隨著DHEA的含量增加而上升。肝臟TSH方面,有餵食Vit. E之大鼠無顯著差異;缺乏 Vit. E之大鼠,TSH含量與DHEA之餵食量成反比 (p<0.001)。 NPSH則是餵食Vit. E的組別明顯高於無餵食Vit. E者(p<0.001),且缺乏Vit. E 之大鼠NPSH含量因DHEA的增加而下降。餵食Vit. E的組別,大鼠腦中G6PD活性隨著DHEA的劑量增加而下降。而餵食Vit. E之大鼠肝中G6PD活性亦顯著高於缺乏Vit. E之大鼠(p<0.01)。缺乏Vit. E的大鼠腦中,GST的活性隨DHEA的增加而上升。不論有無餵食Vit. E,大鼠溶血 (hemolysis) 的程度會隨著DHEA含量的增加而上升 (p<0.01),缺乏Vit. E的組別尤其明顯。肝臟中之脂質過氧化傷害並不顯著,但經0.7 mM BHP誘發之後,缺乏Vit. E的大鼠體內,TBARS顯著提高(p<0.05)。
結論:餵食DHEA會提高血漿中DHEA的含量,但卻會減少腎上腺和腦中的分泌。缺乏Vit. E 時,DHEA會導致大鼠肝臟中TSH、NPSH含量下降以及BHP誘導之TBARS的增加,表示DHEA可能會造成氧化傷害。而溶血現象和GOT、GPT活性升高,還有肝臟中GST酵素活性的下降,表示DHEA會產生毒性;這說明了DHEA具有促氧化性和毒性,但在Vit.E 的保護下則可免於這些傷害。
第二部分
在第二部分中將以較簡單的細胞培養系統 HepG2 cells來做進一步探討,以解決並進一步釐清下列問題,包括:1.DHEA到底會不會促進脂質過氧化、2.DHEA是抗氧化劑或氧化劑、3.DHEA到底會使G6PD上昇或下降。此外,我們進一步想知道DHEA會不會產生脂質過氧化傷害,進而引起細胞壞死(necrosis),還有DHEA會不會進入細胞中造成DNA傷害,甚至引發細胞程式性死亡(apoptosis)。
結果顯示:HepG2細胞經0~1000 M DHEA培養24小時後,細胞內最高濃度為0.089 ﹪最低為0.02 ﹪。而HepG2細胞數目明顯的隨著DHEA濃度成反比,當DHEA濃度到達1000 M時,細胞數目和蛋白質的含量都是隨著DHEA的濃度上升而下降,分別只有控制組(DMSO)的59 ﹪(p<0.01)和65 ﹪(p<0.05)。以300 M DHEA培養HepG2細胞24 hr後,TBARS比控制組增加26 ﹪(p<0.05),但DHEA濃度再昇高時,TBARS則未顯著改變。而經Fe-NTA培養兩小時後,500 M DHEA的TBARS比控制組高了約6倍(p<0.01) 但DHEA濃度再昇高時,TBARS則未顯著改變,表示當DHEA濃度大於500 M時,加入Fe-NTA,DHEA不但沒有抗氧化的效果,反而是促氧化的角色。當DHEA濃度到達300 M以上時,G6PD活性明顯的下降了(p<0.001),說明了DHEA確實會抑制G6PD的活性。GPT和LDH leakage都沒有隨著DHEA濃度的增加而有顯著性的差異,表示DHEA並不會造成細胞破裂或壞死(necrosis)。
電泳圖中看不出有DNA雙股斷裂的現象;UDS結果顯示:控制組與最高濃度DHEA (1000 M)之間並沒有顯著差異;而Comet assay結果也顯示:DNA的傷害並沒有與DHEA的濃度成比例,而且拖尾的DNA在各組中比例也在正常範圍(約2~5﹪),表示DHEA造成的DNA傷害並不嚴重。此外,DHEA也沒有改變5’-nucleotidase的活性,其結果並沒有顯著的差異。以DHEA濃度0~1000 M培養24 hr後,細胞內游離鈣離子濃度也沒有顯著的差異。
結論:雖然DHEA會促進脂質過氧化和細胞數目的減少,但其傷害的強度還不至於使細胞受傷甚至死亡;由LDH leakage、GPT與5’-nucleotidase的結果可知,細胞並沒有因DHEA的作用而使細胞膜破裂或受到傷害。DHEA確實會抑制G6PD的活性,使其抗氧化系統受損,甚至減少ribose的生化合成,使DNA複製減緩。UDS、DNA fragmentation與Comet assay的結果也顯示:HepG2細胞數目的減少,與DNA傷害應無直接關係。推測HepG2細胞數目的減少,並不是因為細胞壞死(necrosis)或細胞程式性死亡(apoptosis),而是DHEA進入DNA中,影響DNA複製基因,而導致細胞數目的減少。

Part 1
DHEA is the precursor of both male and female sex hormones and has been shown to have many functions including anti-obese, anti-cancer and antioxidant activities. Part 1 was to study the distribution and accumulation in rat tissues and the antioxidant or prooxidant effects as well as toxicity of supplemental DHEA. The approaches were to provide DHEA (0,50,and 100 mg/kg diet) to rats for 6 weeks in diets deficient or sufficient in vitamin E (30 IU/kg diet).
The results show that feeding rats with DHEA did not affect rat body weights or organ weights. In Vit. E-deficient rats, dietary DHEA increased plasma DHEA concentration (p<0.001). In rats either deficient or sufficient in Vit. E, dietary DHEA decreased adrenal and brain DHEA contents. Plasma GPT activity was increased by DHEA supplementation in Vit. E deficient rats. Hepatic TSH contents were not significantly affected by dietary DHEA in Vit. E-sufficient rats but were decreased (p<0.001) by dietary DHEA in Vit. E deficient rats. Dietary Vit. E significantly increased hepatic NPSH content (p<0.001), and dietary DHEA significantly decreased hepatic NPSH contents (p<0.001). The brain G6PD activity in Vit. E-sufficient rats by supplemental DHEA; hepatic G6PD activity was higher in Vit. E-sufficient rats than in Vit. E- deficient rats (p<0.01). Brain GST activity was increased by supplemental DHEA contents in Vit. E-deficient rats. Regardless of dietary Vit. E, hemolysis was increased by supplemental DHEA but the extent of hemolysis was higher in Vit. E-deficient rats than in Vit. E-deficient (p<0.01). Hepatic ex-vivo TBARS were not significantly affected by DHEA or Vit. E. Hepatic in-vitro TBARS induced by 0.7 mM BHP was increased in Vit. E-deficient rats (p<0.05).
Conclusion: supplemental DHEA increased plasma DHEA concentration but decreased adrenal and brain DHEA concentrations. DHEA decreased hepatic TSH and NPSH contents in both Vit. E-sufficient and Vit. E-deficient rats but increased hepatic TBARS in Vit. E deficient rats. These results suggest that DHEA may have induced oxidative damage. In addition, DHEA increased hemolysis and hepatic GOT and GPT activity and decreased GST activity. These results suggest that DHEA is pro-oxidative and possibly toxic when rats are deficient in Vit. E, but these effects can largely be avoided when rats are sufficient in Vit. E.
Part 2
In part 2, we used a simple cell line, HepG2 cells, to strengthen the findings in part 1 and to clarify the following questions; they included: 1.whether DHEA induces lipid oxidation, 2.whether DHEA is an antioxidant or oxidant, and 3.whether DHEA decreased or increased G6PD activity. Furthermore, we investigated whether DHEA results in necrosis and apoptosis.
The results show that after incubating with 0~1000 M DHEA for 24 hrs, cellular DHEA concentration was maximum at 0.089% and minimum at 0.02%. HepG2 cell numbers and protein contents were significantly decreased by DHEA. When DHEA concentration was 1000 M, cell numbers and protein contents were only 59% (p<0.01) and 65% (p<0.05) of control experiment. TBARS were increased 26% (p<0.05) by incubation with 300 M DHEA for 24 hrs. There was no significant difference in TBARS when DHEA was higher than 300 M. In HepG2 cells incubated with 500 M DHEA for 24hrs followed by incubation with Fe-NTA for 2 hrs, TBARS were 6-fold higher than the control (p<0.01). TBARS were not further increased by DHEA at concentrations higher than 500 M. The results suggest that when DHEA concentrations are higher than 500 M, DHEA is not an antioxidant, but a pro-oxidant for HepG2 cells incubated with Fe-NTA. G6PD activity was significantly decreased when DHEA contents was higher than 300 M. GPT activity and LDH leakage were not affected by DHEA. The results indicated that DHEA does not result in cell necrosis.
Incubation of HepG2 cells with DHEA did not lead to double-strand DNA breakage, as shown by agarose gel electrophoresis, nor did not lead to unscheduled DNA synthesis (UDS) since there was no significant different between the control and 1000 M DHEA in the UDS assay. The Comet assay shows that DHEA did not cause DNA single-strand breakage in HepG2 cells since the proportion of tail moment was normal (2~5%). DHEA also did not affect 5’-nucleotidase activity. In addition, cellular free calcium was not significantly different by incubating with 0~1000 M DHEA for 24 hrs.
Conclusion: although DHEA resulted in lipid peroxidation and decreased cell numbers, it did not lead to necrosis or apoptosis of HepG2 cells, cause leakage of LDH or GPT or affect the membrane 5’-nucleotidase activity. Thus, DHEA does not result in necrosis or apoptosis. DHEA inhibited G6PD activity with may increase cellular oxidative stress and may inhibit cell proliferation by decreasing available of ribose for DNA biosynthesis. The data of UDS、Comet assay and DNA fragmentation suggest that there is no obvious interrelation between decreased cell numbers and DNA damage. It may be speculated that DHEA may inhibit cell proliferation by antagonizing the action of genes that are necessary for cell proliferation.

第一部份目錄
1.前言14
2.材料和方法17
2.1 材料17
2.2 動物飼養與實驗設計18
2.2.1 動物選擇與飼養18
2.2.2 基礎飼料18
2.2.3 去除維生素E之玉米油置備法18
2.3 試驗設計19
2.4 動物和組織器官樣品之處理19
2.5 各種測定項目20
2.5.1 DHEA之測定20
2.5.2 血漿GOT及GPT之活性測定20
2.5.3 TSH和NPSH之測定21
2.5.4 G6PD之測定21
2.5.5 GST之測定22
2.5.6 溶血程度之測定22
2.5.7 脂質過氧化之測定22
2.5.8 脂肪含量之測定23
2.5.9 組織及血漿中維生素E含量之測定23
2.5.10 玉米油中維生素E含量之測定24
2.6 統計方法24
3.結果25
3.1 體重及器官重量25
3.2 血漿及器官中DHEA之含量25
3.3 血漿及肝中GOT、GPT酵素活性26
3.4 肝臟中TSH與NPSH之含量26
3.5 肝臟及血漿中Vit. E之含量27
3.6 肝臟與腦中G6PD、GST酵素活性.27
3.7 溶血程度.28
3.8 脂質過氧化.28
4.討論29
4.1 Vit. E及DHEA,對大鼠器官中DHEA含量之影響29
4.2 Vit. E及DHEA,對大鼠組織促氧化性和毒性之影響30
4.3 Vit. E及DHEA,對大鼠溶血之影響31
4.4 Vit. E及DHEA,對大鼠G6PD之影響31
4.5 Vit. E及DHEA,對大鼠組織TBARS之影響32
5.結論34
6.圖表35
7.參考文獻49
第二部分目錄
1.前言61
2.材料和方法65
2.1 細胞培養65
2.2 細胞解凍與保存66
2.3 細胞氧化處理66
2.4 DHEA之測定67
2.5 細胞存活率測定67
2.5.1 trypan blue67
2.6 細胞脂質過氧化測定68
2.7 DNA純化及傷害測定68
2.7.1 DNA fragmentation assay68
2.7.2 Comet assay69
2.7.3 UDS (unscheduled DNA synthesis) assay69
2.8 酵素活性的測定70
2.8.1 G6PD70
2.8.2 LDH leakage70
2.8.3 GPT71
2.8.4 5’-nucleotidase71
2.9 蛋白質含量的測定71
2.10 游離鈣離子測定72
2.11 統計分析72
3. 結果73
3.1 細胞內DHEA濃度73
3.2 細胞存活率與外觀73
3.3 細胞數目73
3.4 脂質過氧化73
3.5 G6PD的變化74
3.6 GPT and LDH leakage74
3.7 DNA fragmentation74
3.8 UDS (unscheduled DNA synthesis)75
3.9 Comet assay75
3.10 5’-nucleotidase75
3.11 Free calcium76
4. 討論77
4.1 細胞中DHEA的濃度77
4.2 DHEA的促氧化性或抗氧化性之探討77
4.3 DHEA對G6PD在HepG2細胞中之影響78
4.4 DHEA對HepG2細胞生長之影響79
4.5 DHEA對HepG2細胞氧化傷害之探討79
4.6 DHEA對HepG2細胞DNA傷害之探討80
5. 結論82
6. 圖表83
7. 參考文獻99

Anonymous. (1992) Can you live longer: What works and what doesn’t ? Consumer Reports. January, 7-13.
Aragno, M., Brignardello, E., Tamagno, E., Gatto, V., Danni, O. and Boccuzzi, G. (1997) Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rat. J. Endocrinology. 155: 233-240.
Aragno, M., Tamagno, E., Boccuzzi, G., Brignardello, E. and Danni, O. (1994) Prevention of CCl4 —induced lipid peroxidation in liver microsomes from DHEA-pretreated rats. Free Radical Res. 21: 427-435.
Aragno, M., Tamagno, E., Boccuzzi, G., Broognaedello, E., Elena, C. Elena, P. and Danni, O. (1993) Dehydroepiandrosterone pretreament peotects rats against the pro-oxidant and necrogenic effects of carbon tetrachloride. Biochem. Pharmacol. 46: 1689-1694.
Arlene, J. M., John, J. N., Jerald, C. N. and Samuel, S. C. Y. (1994). Effect of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol Metab 78:1360-1367
Battelli, D., Bellei, M., Kneer, N., Contri, M. B., Ronchetti, I. P., Bobyleva, V. and Lardy H. A. (1994) Effects of dehydroepi-androsterone and carnitine treatment on rat liver. Biochem. Mol. Biol. Intl. 33: 1063-1071.
Benoit, B., Alain, B., Fernand, L., Andre, D., Lionel, C. and Gerard M. (1989) Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and quinea pig after castration: Unique importance of extratesticular androgens in men. J. Steroid Biochem. 32: 695-698.
Buttriss J. L. and Diplock A. T. (1984) High performance liquid chromatography methods for vitamin E in tissues. Methods in Enzyme 105: 131-147.
Calzyme Laboratories (1991/1992) Glutamin oxaloacetic transaminase and Glutamic pyruvic transaminase. Calzyme Laboratories, Inc., San Luis Obispo, CA.
Casazza, J. P., Schaffer, W. T. and Veech, R. T. (1986) The effect of dehydroepiandrosterone on liver metabolites. J. Nutr. 116: 304-310.
Cleary, M. P. (1991) The antiobesity effect of dehydroepiandro-sterone in rats. Proc. Soc. Exp. Biol. Med. 196:8-16.
Cleary, M. P. and Zisk, J. F. (1986) Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female zucker rats. Intl. J. Obesity 10: 193-204.
Cleary, M.P. (1990) Effect of dehydroepiandrosterone treatmeny on liver metabolism in rats. Int. J. Biochem. 22: 205-210.
Di Simplicio, P., Rossi, R., Falcinelli, S., Ceserani, R. and Formento, M. L. (1997) Antioxidant status in various tissues of the mouse after fasting and swimming stress. European J. Appl. Phy. Occ. Phy. 76: 302-307.
DiMonaco, M., Pizzini, A., Gatto, V., Leonardi, L., Gallo, M., Brignardello, E. and Boccuzzi, G. (1997) Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells. British J. Cancer 75: 589-92.
Draper, H. H. and Csallany, A. S. (1969) A simplfied hemolysis test for vitamin E deficiency. J. Nutr. 98: 390-394.
Erhard, H., Grazziela, Y., Elena Ghinea, Leonard D., Elena, P. and Linda S. L. (1996) Sitimulation of the secretion of dehydroepi-androsterone by melatonin in mouse adrenals in vitro. Life Sci. 58: 263-267.
Ganong, W. F. (1991) Review of medical physiology, 15th ed. Prentice-Hall Intermation, Englewood, N. J.
Gary, G., Mary, C. M. and Levy, H. R. (1995) On the mechaniam of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch. Biochem. Biophys. 318: 25-29.
Glock, G. E. and Mclean, P. (1953) Futher studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase of rat liver. Biochem. J. 55: 400-408.
Goldfarb, A. H., Mcintosh, M. K. and Boyer, B. T. (1996) Vitamin E attenuates myocardial oxidative stress induced by DHEA in rested and exercised rats. J. Appl. Physiol. 80: 486-490.
Goldfarb, A. H., Mcintosh, M. K., Boyer, B. T. and Fatouros J. (1994) Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J. Appl. Physiol. 74: 1630-1635.
Goldfarb, A. H., Mcintosh, M. K., Boyer, B. T. and Fatouros, J. (1994) Vitamin E effect on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J. Appl. Physiol. 76: 1630-1635.
Gorden, G. B., Shantz, L. M. and Talalay, P. (1987) Modulation of growth, differentiation and carcinogenesis by dehydroepiandro-sterone. Adv. Enzyme Regul. 19:857-864.
Goto, H., Yamashita, S. and Makita, T. (1998) Prevention of orotic-acid-induced fatty liver in male rats by dehydroepi-androsterone and/or phenobarbital. J. Vet. Med. Sci. 60: 513-517.
Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974) Glutathione S-transferases. J. Biol. Chem. 249: 7130-7139.
Hawkins, J. M., Jones, W.E., Bonner, F. W. and Gibson, G.G. (1987) The effect of peroxisome proliferators on microsomal, peroxisomal, and mitrochondrial enzyme activities in the liver and kidney. (260 refs). Drug Metab. Rev.18: 441-515.
Hayashi F., Tamura H., Yamada J., Kasai H. and Suga T. (1994) Characteristics of the hepatocarcinogenesis caused by dehydroepi-androsterone, a peroxisome proliferator, in male F-344 rats. Carcinogenesis 15: 2215-2219.
Hu, M. L. (1994) Measurement of plasma protein thiols and GSH. Methods Enzymol. 233: 380-385.
Hu, M. L. and Ng, H. P. (1998) Dietary selenium and vitamin E affect adrenal and brain dehydroepiandrosterone levels in young rats. J. Nutr. Biochem. 9: 339-343.
Hu, M. L., Frankel, E. N., leiboivitz, B. E. and Tappel A. L. (1989) Effect of dietary lipid and vitamin E on in vitro lipid peroxidation in rat liver and kidney homogenates. J. Nutr. 119: 1574-1582.
Hu, M. L., Ng, H. P. and Shih, M. K. (1997) Hemolytic effects of dehydroepiandrosterone in vitro. Life Sci. 61: 2137-2142.
Jendryczko, A., Szpyrka, G., Gruszczynski, J. and Kozowicz, M. (1993) Cigarette smoke exposure of school children: effect of passive smoking and vitamin E supplementation on blood antioxidant ststus. Neoplasma. 40(3): 199-203.
Jiang, S., Lee, J., Zhang, Z., Insevra, P., Solkoff, D. and Watson, R. R. (1998) Dehydroepiandrosterone synergizes with antioxidant supplement for immune restoration in old as well as retrovirus-infected mice. J. Nutr. Biochem. 9: 362-369.
Jocely, P. C. (1972) Biochemistry of the SH group. P. 10, Academic Press, London, New York.
Joseph, P. C., Walter, T. S. and Richard, I. V. (1986) The effect of dehydroepiandrosterone on liver metabolites. J. Nutr. 116: 304-310.
Julian, S., Peter, B. and Doris, M. (1996) Increase of lipid peroxidation in rat liver microsomes by dehydroepiandrosterone feeding. Biochem. Biophys. Acta. 1315: 193-198.
Khalil, A., Lehoux, J. G., wagner, R. J., Lesur, O., Cruz, S., Dupont, E., Jay-Gerin, J. P., Wallach, J. and Fulop, T. (1998) Dehydroepiandrosterone protects low density lipoproteins against peroxidation by free radicals produced by gamma-radiolysis of ethanol-water mixtures. Atherosclerosis. 136(1): 99-107.
Lee, T. C., Lai, G. J., Kao, S.L., Ho, I.C. and Wu, C. W. (1993) Pro-tection of a rat tracheal epithelial cell line from paraquat toxicity by inhibition of glucose-6-phosphate dehydrogenase. Biochem. Pharm-acol. 45: 1143-1147.
Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S. and Stadtman, E. R. (1990) Determination of carbonyl content in oxidatively modified protein. Meth. Enzymol. 186: 464-478.
Liu, J. F. and Huang, C. J. (1995) Tissue -tocopherol retention in male rats is compromised by feeding diets contaning oxidized frying oil. J. Nutr. 125: 3071-3080.
Manuela, A., Elena, T., Giuseppen, B., Enrico, B.,Elena, C., Andrea, P. and Oliviero, D. (1993) Dehydroepiandrosterone protects rats against the pro-oxidant and necrogenic effects of carbon tetrachloride. Biochemical Pharmacology. 46: 1689-1694.
McIntosh, M. K., Goldfarb, A. H., Curtis, L. N. and Cote, P. S. (1993) Vitamin E alters hepatic antioxidant enzymes in rats treated with dehdroepiandrosterone (DHEA). J. Nutr. 123: 216-224.
Michael, K. M., Allen, H. G., Linda, N. C. and Pam, S. C. (1993) Vitamin E alter hepatic antioxidant enzyme in rats treated with dehydroepiandrosterone (DHEA). J. Nutr. 123: 216-224.
Mohan, P. F. and Cleary, M. P. (1989a) Comparison of dehydroepi-androsterone and clofibric acid treatments in obese Zucker rats. J. Nutr. 119: 496-501.
Mohan, P. F. and Cleary, M. P. (1989b) Dehydroepiandrosterone and related steroids inhibit mitochondrial respiration in vitro. Int. J. Biochem. 21: 1103-1107.
Mohri, K., Dohmoto, C., Ikesu, H. amd Igarasshi, O. (1983) A simple elimination method of vitamin E from vegetable and fish oils for the preparation of vitamin E deficient diet. J. Jpn. Soc. Nutri. Food Sci. 36: 122-124 (in Japanese)
Nestler, J. E., Barlascini, C.O. Clore, AJ. N. and Blackard, W. G. (1988) J. Clin. Endocrinol. Metab. 66: 57-61.
Ng, H. P., Wang, Y. F., Lee, C. Y. and Hu, M. L. (1999) Toxicological and antioxidant effects of short-term dehydroepiandrosterone injection in young rats fed diets deficient or adequate in vitamin E. Food Chem. Toxical. (in press).
Nutruent requirements of laboratory animal, 3rd ed., (1978) National acadecy of sciences., Washington, DC.
Orentreich, N., Brind, J., Rizer, R. and Vogelman, J. (1984) Age changes and sex differences in serum dehydroepianfrosterone sulfate concentrations throughout adulthood. J. Clin. Endocrinol. Metab. 59: 51-555.
Paul, R. and Etienne-Emile, B. (1995) Dehydroepiandrosterone (DHEA) is a neuroactive neurosteroid. Annals. N. Y. A. S. 774: 82-110.
Paula, I., Zhen, Z., Sussan, K. A., Mohsen, A. N., Bailin, L., Shuguang, J., Don, S., Mark, M., Kerry, E. and Ronald, R. W. (1998) Modulation of cytokine production by dehydroepi-androsterone (DHEA) plus melatonin (MLT) supplementation of old mice. P.S.E.B.M. 218: 76-82.
Rifici, V. A. and Khachadurian, A. K. (1992) The inhibition of low-density lipid oxidation by 17-beta estrodiol. Metabolism. Environ. Res. 55: 145-156.
Rom, W. N. and Harkin, T. (1991) Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macro-phages in vitro in asbestosis. Environ. Res. 55: 145-156.
Seis, H. (1991) Oxidative stress : from basic research to clinical application. Am. J. Med. 91 (suppl. 3C): 31-38.
Swierczynski, J. and Mayer, D. (1998) Vitamin E prevents induction of carbonyl group formation in microsomal protein by dehydroepiandrosterone. Nutr. & Cancer 32: 101-106.
Vladimirov, I. (1998) Free radical and antioxidants. (review). Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 7: 43-51.
William, H. H., Michael, J. P. and William, B.J. (1974) Glutathion S-transferases The first enzyme step in mercapturic acid formation. J. Bio. Chem. 249: 7130-7139.
Yagi, K. (1976) A simple fluoromtric assay for lipoperoxide in blood plasma. Biochem. Med. 15: 212-216.
Yamada J., Sakuma M, Ikeda T., Fukuda K. and Suga T. (1991) Characteristics of dehydroepiandrosterone as a peroxisome proliferator. Biochem. Biophys. Acta. 1092: 233-243.
Zavodnik, L. B., Zavodnik, I. B., Niekurzak, A., Szosland, K. and Bryszewska, M. (1998) Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tert-butyl hydroperoxide. Bioche. Mol. Biol. Intern. 44(3): 577-588.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top