跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龐欽元
研究生(外文):Pang, Chin-Yuan
論文名稱:農業行庫授信風險評估模式之研究
論文名稱(外文):A Study on Credit Risk Rating Models of Agricultural Banks
指導教授:羅明哲羅明哲引用關係
指導教授(外文):Luo, Ming-Zhe
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業經濟學系
學門:農業科學學門
學類:農業經濟及推廣學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:107
中文關鍵詞:上市公司因素分析多變量區別分析Probit迴歸分析Logit迴歸分析農業行庫全額交割信用危機財務比率授信風險
外文關鍵詞:Agricultural BanksCredit RiskFinance RatioListed CompaniesFull DeliveryCredit CrisisFactor AnalysisMultiple Discriminate AnalysisProbit Regression AnalysisLogit Regression Analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從政府提倡金融自由化、國際化後,新銀行的相繼成立,金融商品不斷的推陳出新,使得銀行授信業務間的競爭日趨白熱化。銀行之營運槓桿大不如前,授信之利息收入直線下滑。然而多數的銀行在積極拓展授信業務的同時,可能因此忽略了授信的品質,當經濟景氣低迷時,面臨借貸者無力償還或要求展期的情形,增加銀行業務經營的風險性與不確定性。農業行庫(中國農民銀行、台灣土地銀行與台灣省合作金庫)為農業之專業銀行,在調劑農業金融及供給農業有關信用上,扮演著極重要的角色。職是之故,本研究以農業行庫授信戶財務比率資料,建立一套較佳之授信風險評估模式,以作為農業行庫授信風險評估之參考依據。
本研究以台灣證券交易所股票公開上市、上櫃,且與農業行庫有債權往來關係之102家公司為研究樣本,其中以股票交易被裁定為全額交割、停止買賣或終止上市(櫃)之公司,作為信用危機公司之界定標準,共選取信用危機樣本34家﹔另以配對方式,選取產業相同與規模相近之信用正常樣本68家﹔並將樣本分割為兩部分,原始樣本包含69家上市、上櫃公司,預測樣本包含33家上市、上櫃公司。收集信用危機前三年之資產負債表、損益表、股東權益變動表與現金流量表來計算財務比率各20項,而後利用因素分析法萃取每年度之財務比率因素,依各年度所抽取之共同因素建立信用危機發生前三年度之多變量區別分析模式、Probit及Logit迴歸分析模式,並比較其區別與預測效果。
研究結果顯示:
(1)各年度之財務比率因素隨時間而改變,危機發生前一年至前三年,
因素分析將20項財務比率歸納為5-6個共同因素,各年度財務比率之
因素解釋能力分別為71.052﹪、84.358﹪與80.564﹪。
(2)本研究所建立之各模式,其解釋能力與區別能力均具顯著性。危機
發生前一年至前三年,多變量區別分析模式之區別及預測準確率依
序分別為65.22﹪、65.22﹪與60.87﹪﹔63.64﹪、66.67﹪與
54.55﹪。Probit分析模式為76.81﹪、73.91﹪與75.36﹪;
75.76﹪、66.67﹪與75.76﹪。Logit分析模式為78.26﹪、73.91﹪
與77.36﹪﹔75.76﹪、66.67﹪與75.76﹪。
(3)Logit迴歸分析模式無論於分類及測試效果上皆優於多變量區別分析
模式與Probit迴歸分析模式。
Because of the internationalization and Liberalization of the nation''s financial system, new banks have been established one by one, and the financial products have been changed very fast. The competition in loan making among banks has become harder. Then the banking cannot use leverage as ever, and both the revenues of interest and the profits are declining. Most banks start increasing the loan business, they may neglect the quality of loan. When the debtors are involved with recession, they may face cash insolvency and cash inadequacy. Therefore the environment of bank operation becomes more uncertain and risky. Agricultural banks (The Farmers Bank of China, Taiwan Land Bank and Taiwan Cooperative Bank) are the professional banks of agriculture. They play an important role in adjusting agricultural finance and providing credit related to agriculture. As result, banks urgently need a concrete and definite credit risk evaluation model as a criterion before loan making.
The data of this study was derived from 102 sample stock companies listed in Taiwan stock exchange corporation, which the agricultural banks made loans to them. We used those companies with full delivery or were previously removed from the list as the criterion of credit crisis and then chose 34 credit crisis samples for data collection. On the other hand, we separately found 68 normal samples with the similar scales in the same industry by means of pair-making method. And all these 102 samples were divided into two groups: the first subsameple of 69 companies was used as the original set; the second subsameple consisted of 33 companies was used as the predictive set. The balance sheet, income statement, schedule of changes in stockholders'' equity and cash flow statement were traced back to 4 years before failure to compute the 20 annual financial ratios. The financial status of failure and non-failure companies were first compared and contrasted. The factor analysis was then applied to extract the most significant ratios in predicting the business failures. Based on the common ratios extracted annually, multiple discriminant analysis model, probit regression model and logistic regression model were developed by using the data of three years for each model prior to the credit failure. We can compare the differences and the predicted performances of these models.
The empirical results led to the following conclusions:
(1) The significant financial ratios were not identical in
three years. 5 to 6 factors were extracted from 20 ratios
through factor analysis, the variance of significant ratios
were found to be 71.052%, 84.358% and 80.564% respectively.
(2) As the study showed, the explanatory ability and
discriminanting ability in this study were significant.
The correct rates of the classification and the prediction
of multiple discriminate analysis model in three years were
separately 65.22%, 65.22% and 60.87%; 63.64%, 60.87% and
63.64%. Probit regression model were 76.81%, 73.91% and
75.36%; 75.76%, 66.67% and 75.76%. Logistic regression
model were 78.26%, 73.91% and 75.36%; 75.76%, 66.67% and
75.76%.
(3) The results of this research revealed that the logistic
regression model performed better on both the correct
classification and the prediction than the other two models.
目錄……………………………………………………I
表目錄…………………………………………………Ⅲ
圖目錄…………………………………………………V
第一章 緒論
第一節 研究動機與目的……………………………1
第二節 研究方法與步驟……………………………6
第三節 研究範圍、期間與資料來源………………8
第二章 銀行授信風險評估模式探討
第一節 授信風險之意義與內容……………………9
第二節 銀行授信風險之評估原則…………………11
第三節 農業行庫授信決策過程……………………16
第三章 文獻回顧
第一節 國外文獻回顧………………………………21
第二節 國內文獻回顧………………………………28
第三節 小結…………………………………………41
第四章 研究設計
第一節 研究樣本……………………………………48
第二節 研究變數……………………………………52
第三節 因素分析法…………………………………57
第四節 多變量區別分析……………………………63
第五節 Probit及Logit迴歸分析………………… 66
本章註釋…………………………………………… 69
第五章 實證結果與分析
第一節 變數選取結果………………………………71
第二節 區別模式分析結果…………………………78
第三節 Probit模式分析結果………………………84
第四節 Logit模式分析結果……………………… 90
第五節 各模式構建優劣分析………………………96
第六章 結論與建議
第一節 結論…………………………………………100
第二節 建議…………………………………………102
第三節 研究限制……………………………………103
參考文獻…………………………………………… 104
一、中文部份
王淑娟(1998),“如何有效防範催收業務弊端之發生”,合作金庫,
八十七年八月,頁120-132。
王麗淑(1994),以財務比率建立銀行放款信用評估模式,國立交通大學
管理科學研究所碩士論文。
何太山(1977),運用區別分析建立商業放款信用評分制度,國立政治大
學企業管理研究所碩士論文。
余德培、留敬中(1987),“銀行授信風險評估模型之研究:台灣紡織業
之個案分析”,基層金融,第十四期,頁35-57。
李惠民(1984),中小企業信用風險評估模式之研究,國立政治大學企業
管理研究所碩士論文。
李樑堅、馮志剛(1997),“銀行個人擔保與信用放款授信評估之研
究”,臺灣銀行季刊,第四十九卷第二期,頁1-36。
周詩添(1978),企業授信風險評估之研究,私立淡江大學管理科學研究
所碩士論文。
林清山(1988),多變量分析統計法,東華書局出版。
林智祥(1993),“美國的銀行授信管理審核制度其業務-上、下”,彰
銀資料,第四十二卷第八期、第九期,頁1-11、17-32。
林蔓蓁(1994),“銀行授信客戶違約風險之預測”,國立中央大學資訊
管理研究所碩士論文。
韋端、鄭光甫(1995),抽樣方法-理論與實務,三民書局出版,p.47。
孫昭仁(1983),金融業授信業務概要,梅枝圖書印刷有限公司。
徐健進(1985),銀行放款信用評等模式之研究,國立政治大學企業管理
研究所碩士論文。
郝旭烈(1994),銀行放款信用評估模型之研究-以台灣地區塑膠業為
例,國立政治大學企業管理研究所碩士論文
許永傑 (1995),銀行授信風險評估預警模式之研究,國立中興大學企業
管理研究所碩士論文。
陳文生(1990),財務分析應用於銀行放款信用評估之研究,國立中山大
學企業管理研究所碩士論文。
陳明賢(1986),財務危機預測之計量分析研究,國立台灣大學商學研究
所碩士論文。
陳肇榮(1983),運用財務比率預測企業財務危機之實證研究,國立政治
大學企業管理研究所碩士論文。
陳錦村(1995),“銀行授信客戶之風險評估”,中山管理評論,第三卷
第四期,頁1-23。
陳錦村、許通安、林蔓蓁(1996),“銀行授信客戶違約風險之預測”,
管理科學學報,第十三卷第二期,頁173-195。
彭美珊(1994),“授信決策綜合性評估模式之研究”,經社法制論叢,
第十四期,頁405-431。
馮美珍(1995),銀行授信風險、信用評等與監督角色之互動研究,國立
中央大學財務管理研究所碩士論文。
黃小玉(1988),銀行放款信用評估模式之研究-最佳模式之選擇,私立
淡江大學管理科學研究所碩士論文。
黃天麟、葉國興(1994),銀行對企業授信規範,金融人員研究訓練中心
出版。p.15-237。
黃文聰(1996),本國一般銀行放款決策之研究-公民營銀行之比較,國
立中興大學管理科學研究所碩士論文。
黃宏志(1993),銀行放款信用評估模型之研究-以台灣地區電工器材業
為對象,國立交通大學管理科學研究所碩士論文。
黃洸祥(1991),“論農業授信之發展與創新”,今日合庫,第十七卷第
十一期,頁80-90。
黃國男(1994),動態授信管理,財團法人金融聯合徵信中心出版。
楊文榮 (1997),台灣股票上市公司財務危機預警模式,私立淡江大學管
理科學研究所碩士論文。
葉金城(1978),我國股票上市優良與不良企業財務特性之研究-多變數
分析之應用,國立政治大學企業管理研究所碩士論文。
葉英俊(1994),授信風險管理,金融人員研究訓練中心出版。p.25。
劉金華(1996),金融管理,捷太出版社出版。
劉達(1987),“信用評等之作法運用於授信業務之方式與管理-上、
下”,一銀月刊,第三十二卷第二期、第三期,頁35-45、51-59。
劉壽祥(1992),“台灣金融機構對民營企業貸款行為之研究”,台灣土
地金融季刊,頁63-83。
潘錫將(1994),“銀行如何利用企業財務報表作授信決策”,產業經
濟,第一百六十期,頁1-61。
蔡信夫、黃小玉(1989),“銀行放款信用評估模式之研究:最佳模式之
選擇”,企銀季刊,第十三卷第一期,頁2-12。
賴耀群(1977),銀行放款信用評估之研究,私立淡江大學管理科學研究
所碩士論文。
謝邦昌(1998),“多變量分析(二)-因素分析”,中國統計通訊9卷8
期,頁35。
羅際棠(1996),銀行授信與經營,三民書局出版。
二、英文部份
1. Altman, E. I.,(1994)"Corporate Distress Diagnosis:
Comparisons using Linear Discriminant Analysis and Neural
Networks," Journal of Banking and Finance, Vol.18, p.505-529.
2. Altman, Edward I.,(1968)"Financial Ratios, Discriminant
Analysis and the Prediction of corporate Bankruptcy," The
Journal of Finance, Vol. 28, September, p.589-609.
3. Alves, J. R.,(1978)"The Prediction of Small Business
Failure Utilizing Financial and Nonfinancial Data,"
University of Massachusetts, PHD.
4. Ball, C. A. and A. E. Tschoegl,(1982)"The Decision to
Establish a Foreign Bank Branch or Subsidiary: An
Application of Binary Classification Procedures" Journal of
Accounting Research, Spring.
5. Beaver, W. H.,(1966),"Financial Ratios as Predicator of
Failure," Journal of Accounting Research, p.71-111.
6. Berger, A. N. and G. F. Udell,(1995)"Relationship Lending
and Lines of Credit in Small Firm Finance," Journal of
Business, Vol.68, p.351-381.
7. Best, R. and Z. Hang,(1993)"Alternative Information
Sources and the Information Content of Bank Loans," The
Journal of Finance, Vol.48, p.1507-1522.
8. Blum, Marc.(1974)"Failing Company Discriminant Analysis,"
Journal of Accounting Research, Spring, p.1-25.
9. Citron, D. B.(1992)"Financial Ratio Covenants in UK Bank
Loan Contracts and Accounting Policy Choice," Accounting and
Business Research, Vol.22, p.322-336.
10.Dasgupta, C. G., and G. S. Dispensa,(1994)"Comparing the
Predictive Performance of a Neural Network Model with Some
Traditional Market Response Models," International Journal
of Forecasting, Vol.10, p.235-244.
11.Fulmer, J. G., A. G. Thomas, and J. B. William,
(1992)"What Factors Influence the Lending Decision: A
Survey of Commercial Loan Officers," Commercial Lending
Review, Vol.7, p.64-70.
12.Gorr, W. L., D. Nagin, and J. Szczypula,
(1994)"Comparative Study of Artificial Neural Network and
Statistical Models for Predicting Student Grade Point
Averages," International Journal of Forecasting, Vol.10,
p.17-34.
13.Gorr, W. L.,(1994)"Neural Networks in Forecasting: Special
Section," International Journal of Forecasting, Vol.10,
p.1-4.
14.Hair, J. F., Jr., R. E. Anderson, R. L. Tatham, and W. C.
Black,(1995), Multivariate Data Analysis. 4th Edition, New
Jersey: Prentice-Hall.
15.Hiller, Brian and M. V. Ibrahimo,(1993)"Asymmetric
Information and Models of Credit Rationing", Bulletin of
Economic Research, Vol.45, p.271-304.
16.Johnson and Wichern,(1982)Applied Multivariate Statistical
Analysis, Prentice-Hall International Edition.
17.Kaiser, H. F.,(1974)"Little Jiffy, Mark IV. "Educational
and Psychology Measurement. Vol.34, p.111-117.
18.Kolar, J. and H. Thomas, M. and M. S. Erwin,(1989)"A Note
on the Distribution Types of Financial Ratios in the
Commercial Banking in the Commercial Banking Industry,"
Journal of Banking and Finance, Vol.13, p.463-471.
19.Lee, K. C., I. Han, and Y. Kwon,(1996)"Hybrid Neural
Network for Bankruptcy Predictions," Decision Support
System, Vol.18, p.63-72.
20.Li, E. Y.,(1994)"Artificial Neural Networks and Their
Business Application," Information & Management, Vol.27,
p.303-313.
21.Lippmann, R. P.,(1987)"An Introduction to Computing with
Neural Nets," IEEE ASSP Magazines, p.2-22, April.
22.Odom, M. D.,(1989)"A Neural Network Model for Bankruptcy
Prediction," JICNN, Ⅱ, p.163-168.
23.Ohlson, J. A.,(1980)"Financial Ratios and The
Probabilistic Prediction of Bankruptcy," Journal of
Accounting Research, Vol 18, Spring.
24.Parosh, J. and P. Tamari,(1984)"Financial Ratios as a
Means of Regressional Analysis" Journal of Accounting
Research, Spring.
25.Paul, N., Statistic for Business and Economics, Prentice-
Hall International Editions, Third edition, p.890-891.
26.Platt, H. D. and M. B. Platt,(1990)"Development of A Class
of Stable Predictive Variables : The Case of Bankruptcy
Prediction, "Journal of Business Finance & Accounting,
Vol.17,p.31-51. Spring.
27.Platt, H. D. and M. B. Platt,(1991)"A Note on The Use of
Industry-relative Ratios in Bankruptcy Prediction," Journal
of Banking and Finance, Vol.15, p.1183-1194.
28.Schwert, G. W.,(1981)"Using Financial Data to Measure
Effects of Regulation," Journal of Law & Economics, Vol.24,
p.121-158.
29.Soldofsky, M. Rodert, and J. Boe. Warren,(1983)"What''S in
a Change in Industrial Bond Rating ? "Journal of Business
Research, p.91-106, Nov.
30.Watts, R. L. and J. L. Zimmerman,(1986)“Positive
Accounting Theory,”Prentice-Hall, Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top