跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳祈銘
論文名稱:主動式懸吊系統之非線性和適應模糊控制
論文名稱(外文):Nonlinear and Adaptive Fuzzy Control for Active Suspension Systems
指導教授:林麗章
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:126
中文關鍵詞:非線性系統適應控制模糊控制滑動模式適應模糊控制主動式懸吊系統
外文關鍵詞:nonlinear systemadaptive controlfuzzy controlsliding modeadaptive fuzzy controlActive Suspension Systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
主動式懸吊系統若考量致動器動態模式時,本質上為一高度非線性之系統。本文提出懸吊系統之模糊自調式PD控制和適應模糊滑動控制策略,並與Lin和Kanellakopoulos[11]之反向步進控制策略進行比較。控制器設計參數之最佳選定,本文更以田口法提出一種離線使用之參數自調法。
關於模糊自調式PD控制策略之設計,採用類似反向步進控制理論針對串接系統處理方法,將主動式懸吊系統之模式視為由電液伺服致動器次系統和懸吊次系統串接而成。於適應模糊滑動控制策略之設計,則結合了滑動控制、反向步進控制和模糊系統理論,並以李亞譜諾夫理論証明其穩定性。此控制策略以滑動控制策略為主,並引入一適應模糊系統,以李亞譜諾夫方法,推導模糊系統後件部中心值之調適律,以供線上自動調整滑動控制切換部份之增益值。
電腦模擬結果驗證,反向步進控制策略對於擾動路面之減弱能力不錯,但其反應速率較慢且強健性較其它兩種低;使用適應模糊滑動控制策略,可使懸吊系統得到較快的收斂速率和控制成效,且此控制器在路面有大變動時亦能有效控制,具有較高的強健性。至於模糊自調式PD控制,因所需要計算量較低,控制效果亦不錯,甚具實用性。

An active suspension system is inherently nonlinear due to the nonlinear electrohydraulic actuator dynamics. In this thesis, we propose a fuzzy auto-tuning PD control and an adaptive fuzzy sliding mode control for active suspension systems, and compare their performance with backstepping control proposed by Lin and Kanellakopoulos[11]. The Taguchi method is used for the optimal selection of the controller parameters.
The fuzzy auto-tuning PD controller is composed of a PD control with gains auto-tuned using a fuzzy system and nonlinear controls based on the electrohydraulic actuator nonlinear model. The design methodology is similar to the backstepping approach based on the cascade structure of the active suspension systems, however, it is much more simpler. As for the adaptive fuzzy sliding mode control, the traditional sliding mode control, backstepping control and adaptive fuzzy systems design methodology are integrated, and the Lyapunov theory is used to construct and analyze the stable adaptive system. The centers of the consequents of an adaptive fuzzy system are on-line adapted to update the gain of the switching part of the sliding control to compensate for the uncertainty.
Computer simulations show that the ability of the backstepping control to reject the road disturbance is better than the other two strategies, but its response speed is rather slow, and its robustness is very poor. The suggested adaptive fuzzy sliding mode control can work well and have good robustness. Form implementation point of view, the fuzzy self-tuning PD control is more practical than the other twos since its control performance is good and the required computation is much lower.

中文摘要
英文摘要
誌謝
目錄
圖表目錄
符號說明
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.3 論文大綱
第二章 主動式懸吊系統之數學模式
2.1 車輛懸吊系統之運動方程式
2.2 電液伺服致動器之數學模式
第三章 主動式懸吊系統控制器設計
3.1 反向步進法控制器設計
3.2 電液伺服致動系統子控制器設計
3.3 模糊自調式PD控制器設計
3.3.1 模糊系統控制
3.3.2 模糊系統架構之設計
3.3.3 模糊系統隸屬函數的決定與解模糊化
3.4 適應模糊滑動控制器設計
3.4.1 懸吊系統二質量子系統之適應模糊滑動控制設計
3.5 參數設計
3.5.1 穩健化設計
3.5.2 直交表、訊噪比及性能指標
3.5.3 因子效果的估計
3.5.4 參數自調法則
第四章 電腦模擬與結果討論
4.1 系統參數
4.2 測試控制器性能之路面干擾軌跡設計
4.3 控制器參數
4.3.1 反向步進控制器參數之選取
4.3.2 模糊自調式PD控制器參數之選取
4.3.3 適應模糊滑動控制器及電液伺致動系統子控制器之參數選取1 4.3.4 自調法則之參數選取及控制器參數收斂情形
4.4 模擬結果與討論
4.4.1 車輛行駛於路面軌跡A之控制結果
4.4.2 車輛行駛於路面軌跡B之控制結果
4.4.3 車輛行駛於路面軌跡C之控制結果
4.4.4 車輛行駛於其它頻率路面軌跡之控制結果
第五章 結論與展望
附錄
參考文獻
簡歷

[1] E. K. Bender, “Optimum linear preview control with
application to vehicle suspension,” ASME J. of Basic
Engineering, pp. 213-221, June 1968.
[2] C. Yue, T. Butsuen, and J. K. Hedrick, “Alternative
Control Laws for Automotive Active Suspensions,” ASME J.
of Dynamic Systems, Measurement and Contr., Vol. 111, pp.
286-291, June 1989.
[3] M. Sunwoo, K. C. Cheok, and N. J. Huang, “Model Reference
Adaptive Control for Vehicle Active Suspension Systems,”
IEEE Trans. Indust. Electron., Vol. 38, No. 3, pp. 217-
221, June 1991.
[4] R. Krtolica and D. Hrovat, “Optimal Active Suspension
Control Based on A Half-Car Model:An Analytical
Solution,” IEEE Trans. Automat. Contr., Vol. 37, No.4,
pp. 528-532, Apr. 1992.
[5] A. Alleyne, P.D. Neuhaus, and J. K. Hedrick, “Application
of Nonlinear Control Theory to Electronically Controlled
Suspensions,” Vehicle System Dynamics, Vol. 22, pp. 309-
320, 1993.
[6] A. Alleyne and J. K. Hedrick, “Adaptive Control for
Active Suspensions,” DSC Vol. 52, Advanced Automotive
Technologies, pp. 7-13, in Proc. 1993 ASME Winter Annual
Meet., New Orleans, LA, Nov. 1993.
[7] G. H. Engleman and G. Rizzoni, “Including the Effects of
the Force Generation Process in Active Suspension
Control,” in Proc. Amer. Contr. Conf., San Francisco, CA,
June 1993.
[8] A. Alleyne, “Nonlinear and Adaptive Control With
Applications to Active Suspensions,” Doctoral
dissertation, UC Berkeley, 1994.
[9] M. Sunwoo and K. C. Cheok, “An Application of Explicit
Self-Tuning Controller to Vehicle Active Suspension
Systems,” Proc. 29th IEEE Conf. on Decision and Control,
Honolulu, HI, pp. 2251-2257, 1990.
[10] A. Alleyne and J. K. Hedrick, “Nonlinear Adaptive
Control of Active Suspensions,” IEEE Trans. on Control
Systems Technology, Vol.3, pp. 94-101, Mar. 1995.
[11] J.-S. Lin and I. Kanellakopoulos, “Nonlinear Design of
Active Suspensions,” IEEE Control Systems, pp. 45-59,
June 1997.
[12] L. D. Margolis, “Response of Active and Semi-active
Suspension to Realistic Feedback Signals,” Vehicle System
Dynamics, Vol. 11, pp. 267-282, Dec. 1982.
[13] A. Hac, “Suspension Optimization of A 2-DOF Vehicle
Model Using A Stochastic Optimal Control Technique,”
Journal of Sound and Vibration, Vol. 100, No. 3, pp. 343-
357, June 1985.
[14] D. Hrovat, “Applications of Optimal Control to Advanced
Automotive Suspension Design,” Transactions of the ASME,
Journal of Dynamic System, Measurement and Control, Vol.
115, No. 2, pp. 328-342, June 1993.
[15] C.-S. Ting,T.-H. S. Li and F.-C. Kung, “Design of Fuzzy
Controller for Active Suspension System,” Mechatronics,
Vol. 5, No. 4, pp. 365-383, June 1995.
[16] M. V. C. Rao and V. Prahlad, “A Tunable Fuzzy Logic
Controller for Vehicle-Active Suspension Systems,” Fuzzy
Sets And Systems, Vol. 85, pp. 11-21, June 1997.
[17] W. R. Anderson, Controlling Electrohydraulic Systems, New
York, NY:Marcel Dekker, 1988.
[18] H. E. Merritt, Hydraulic Control Systems, New York, NY:
John Wiley & Sons, 1967.
[19] A. G. Thompson, “Design of Active Suspensions,”
Proceedings of the Institution of Mechanical Engineers,
Vol. 185(Part 1), pp. 553-563, 1970-71.
[20] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear
and Adaptive Control Design, Wiley-Interscience, New York,
1995.
[21] Li-Xin Wang, A Course in Fuzzy Systems and Control,
Prentice-Hall, 1997.
[22] K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-
Wesley, 1998.
[23] B.-S. Chen, C.-H. Lee, and Y.-C. Chang, “H∞ Tracking
Design of Uncertain Nonlinear SISO Systems:Adaptive Fuzzy
Approach,” IEEE Trans. on Fuzzy Systems, Vol. 4, pp. 32-
43, Feb. 1996.
[24] B. Yoo and W. Ham, “Adaptive Fuzzy Sliding Mode Control
of Nonlinear System,” IEEE Trans. on Fuzzy Systems, Vol.
6, No. 2, pp. 315-321, May 1998.
[25] Madhav S. Phadke, Quality Engineering Using Robust
Design, AT&T Bell Laboratories, 1989.
[26] S. G. Shina, Concurrent Engineering and Design for
Manufacture of Electronics Products, Van Nostrand
Reinhold, New York, 1991.
[27] G. Taguchi and S. Konishi, Orthogonal Arrays and Linear
Graphs, Dearborn, MI:ASI Press, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top