跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉映志
研究生(外文):Ying-Jyh Yeh
論文名稱:被動性控制理論在具短路防止時間補償之感應馬達上之應用
論文名稱(外文):Passivity-Based Speed Control for Induction Motor Drives with Dead-Time Compensation
指導教授:林鐘焎
指導教授(外文):Jong-Lick Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:75
中文關鍵詞:被動性嚴格被動性短路防止時間感應馬達磁滯電流控制能量塑形數位訊號處理器
外文關鍵詞:passivestrictly passivedead-timeinduction motorhysteresis current controlenergy shapingdigital signal processor (DSP)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
由於感應馬達具有相當程度的非線性,其轉子的電氣狀態變數,如轉子磁通或電流等,通常不易量測,而且馬達參數也會隨著溫升明顯的變動
,而造成速度控制上的問題。因此,本文將使用被動性控制(passivity
-based control),在不知道轉子磁通及轉子電流的情形下,依然可以達到馬達速度控制的目的。
被動性控制由Espinosa及Ortega所提出,係利用能量的觀點,將感應馬達數學模式以Euler-Lagrange的形式表示。整個系統可分解成電機與機械兩個被動性子系統,然後在電機子系統中注入非線性阻尼項,以增強電機子系統的穩定度。再針對此系統設計內迴路電流追隨控制器及外迴路速度追隨控制器,其中電流追隨控制係利用能量塑形(energy shaping),而速度追隨控制則是藉由一階的低通濾波器改變機械子系統的時間常數,以控制轉速誤差收斂的時間。
此外,利用磁滯電流控制可以將電壓命令被動性控制器簡化成電流命令被動性控制器,與常見的間接場導控制具有相同的架構。
在變頻器的實務中,為了避免直流電源短路,必須在開關切換時,加入短路防止時間(dead-time),卻因此影響變頻器的性能,本文針對SPWM變頻器作量化分析並設計補償的方法,以期能提昇變頻器的性能。
整個感應馬達的速度控制系統,係利用高速的DSP數位訊號處理器,配合一馬力的感應馬達及其驅動器來完成。在不同負載及轉子電阻參數變動下,分別以軟體模擬及硬體實作對以上兩種控制器的性能作比較。
Abstract
Owing to the inherent nonlinearity of induction motors, the speed control becomes a challenging problem because the rotor electrical variables such as rotor fluxes and currents are usually unavailable for measurements, and the motor parameters are varying significantly from their nominal values. Based on passivity, the main goal of the dissertation is to design a speed tracking controller for an induction motor drive without knowledge of the electrical rotor variables.
Passivity based control (PBC) was proposed by Espinosa and Ortega. From an energy point of view, the dynamics of an induction motor can be described by Euler-Lagrange equations of motion. The controlled induction motor is composed of electrical and mechanical subsystems. The nonlinear damping can be injected to the electrical subsystem to enhance its stability margin. Then the inner loop current controller and the outer loop speed controller are designed. The former uses energy shaping technique, and the latter is aimed to change the dominant time constant for the mechanical subsystem by adding a first order low pass filter.
Furthermore, passivity-based control exactly reduces to the well-known indirect field-oriented control by adaptive hysteresis current control. It provides a solid theoretical foundation to this popular control strategy.
In the inverter of the driver, the time delay is usually added to the switching signals to prevent a short circuit occurring in the dc link. This causes the dead-time effect which is detrimental to the performance of inverters. To overcome this drawback, a dead-time compensation method in the SPWM inverter is proposed in this dissertation.
The whole induction motor speed control system is implemented by using a high-speed digital signal processor, and an induction motor of one horsepower with a motor driver. The simulation and experiment results of two kinds of controllers are compared under various load disturbances and rotor resistances.
目錄
頁次
中文摘要 I
英文摘要 II
目錄 IV
圖表目錄 VI
第一章 緒論 1-1
1-1 前言 1-1
1-2 研究動機 1-1
1-3 論文內容 1-2
第二章 感應馬達的數學模式 2-1
2-1 由能量推導的機電系統數學模式 2-1
2-2 感應馬達的數學模式 2-5
2-3 與傳統五階感應馬達方程式比較 2-9
2-3-1 電路方程式 2-9
2-3-2 座標軸轉換公式 2-10
2-3-3 參考座標系下的電路方程式 2-11
2-3-4 轉矩方程式 2-14
2-4 分解成回授形式的感應馬達數學模式 2-15
第三章 被動性控制器之理論與設計 3-1
3-1 加入阻尼 3-1
3-2 被動性控制器設計 3-4
3-2-1 內迴路電流追隨控制器 3-4
3-2-2 外迴路速度追隨控制器 3-8
3-3 模擬結果 3-10
3-3-1 無載模擬 3-10
3-3-2 瞬間加載模擬 3-13
3-3-3 轉子電阻變動模擬 3-15
第四章 電流命令被動性控制器4-1
4-1 內迴路電流追隨控制器:磁滯電流控制 4-1
4-2 電流命令被動性控制器 4-3
4-3 模擬結果 4-4
4-3-1 無載模擬 4-4
4-3-2 瞬間加載模擬 4-7
4-3-3 轉子電阻變動模擬 4-9
第五章 短路防止時間補償 5-1
5-1 短路防止時間的影響 5-1
5-2 短路防止時間影響之分析 5-4
5-3 短路防止時間影響的補償 5-6
第六章 實驗結果與比較 6-1
6-1 電壓命令被動性控制器 6-1
6-1-1 實作方塊圖 6-1
6-1-2 實驗結果與比較 6-2
6-2 電流命令被動性控制器 6-7
6-2-1 實作方塊圖 6-7
6-2-2 實驗結果與比較 6-7
第七章 結論與未來展望 7-1
7-1 結論 7-1
7-2 未來展望 7-1
參考文獻
自述
參考文獻
[BCN95] Bodson, M., J. N. Chiasson and R. T. Novotnak, “A Systematic Approach to Selecting Flux References for Torque Maximization in Induction Motors,” IEEE Transactions on Control Systems Technology, Vol. 3, No. 4, pp. 388-397, December 1995.
[Ben98]Ben-Brahim, L., “The Analysis and Compensation of Dead-Time Effects in Three Phase PWM Inverter,” Proceedings of the 24th Annual Conference of the IEEE, Vol. 2, pp. 792-797, 1998.
[Bla72]Blaschke, F., “The Principle of Field Orientation as Applied to the New Transvector Closed Loop Control System for Rotating Field Machines,” Siemens Review, Vol. 34, pp. 217-220, May 1972.
[Bos86]Bose, B. K., Power Electronics and AC Drives, Prentice-Hall, 1986.
[Cec97]Cecati, C., “Experimental Investigation of the Passivity Based Induction Motor Control,” Industrial Electronics, Proceedings of the IEEE International Symposium, Vol. 1, pp. 107-112, 1997.
[CeR97]Cecati, C. and N. Rotondale, “High Performance AC Drivers Using Passivity Based Controllers,” Industrial Electronics, Control and Instrumentation, 23rd International Conference, Vol. 2, pp. 575-580, 1997.
[CeR99]Cecati, C. and N. Rotondale, “Torque and Speed Regulation of Induction Motor Using the Passivity Theory Approach,” IEEE Transactions on industrial electronics, Vol. 46, No. 1, pp. 119-127, February 1999.
[CHE96]Cardenas, V. M., M. Horta and R. Echavarria, “Elimination of Dead Time Effects in Three Phase Inverters,” Power Electronics Congress, Technical Proceedings, IEEE International, pp. 258-262, October 1996.
[EsO94]Espinosa G. and R. Ortega, “State Observers are Unnecessary for Induction Motor Control,” System & Control Letters, Vol. 23, pp. 315-323, 1994.
[GoS97]Gokdere, L. U., M. A. Simaan, “A Passivity-Based Method for Induction Motor Control,” IEEE Transactions on Industrial Electronics, Vol. 44, No. 5, pp. 688-695, October 1997.
[GSB97]Gokdere, L.U., M. A. Simaan and C. W. Brice, “A Passivity-Based Controller for High-Performance Motion Control of Induction Motors,” Power Electronics Specialists Conference, 28th Annual IEEE, Vol. 2, pp. 1480-1485, 1997.
[Hol94]Holtz, J., “Pulsewidth Modulation for Electronic Power Conversion,” Proceedings of the IEEE, Vol. 82, No. 8, pp. 1194-1213, 1994.
[JeP91]Jeong, S. G. and M. H. Park, “The Analysis and Compensation of Dead-Time Effects in PWM Inverters,” IEEE Transactions on Industry Applications, Vol. 38, No. 2, pp. 108-114, April 1991.
[KOCV97]Kim, K. C., R. Ortega, A. Charara and J. P. Vilain, “Theoretical and Experimental Comparison of Two Nonlinear Controllers for Current-Fed Induction Motors,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 3, pp. 338-348, May 1997.
[KPYPK98]Kim, S. H., T. S. Park, J. Y. Yoo, G. T. Park and N. J. Kim, “Dead Time Compensation in a Vector-Controlled Induction Machine,” Power Electronics Specialists Conference, 29th Annual IEEE, Vol. 2, pp. 1011-1016, 1998.
[MeT97]Mendes E. and A. Tijerina-Araiza, “Experimental Comparison Between Field Oriented Control and Passivity Based Control of Induction Motors,” Industrial Electronics, Proceedings of the IEEE International Symposium, Vol. 1, pp. 84-88, 1997.
[NCB95]Novotnak, R. T., J. Chiasson and M. Bodson, “High Performance Motion Control of an Induction Motor,” Proceedings of the 34th Conference on Decision & Control, New Orleans, LA, December 1995.
[NOE97]Nicklasson, P. J., R. Ortega and G. Espinosa-Perez, “Passive-Based Control of a Class of Blondel Park Transformable Electric Machines,” IEEE Transactions on Automatic Control, Vol. 43, No. 5, pp. 629-647, May 1997.
[ONE96] Ortega, R., P. J. Nicklasson and G. Espinosa-Perez, “On Speed Control of Motor,” Automatic, Vol. 32, pp. 455-460, 1996.
[OrE94]Ortega R. and G. Espinosa-Perez, “Torque and Flux Control of Induction Motors: A Physically-Based Approach,” Industrial Electronics, Control and Instrumentation, 20th IEEE International Conference, Vol. 3, pp. 1859-1864, 1994.
[Tay94]Taylor, D. G., “Nonlinear Control of Electric Machines: Overview,” IEEE Control Systems Magazine, Vol. 14, No. 6, pp. 41-51, December 1994.
[WhW59]White, D. C. and H. H. Woodson, Electromechanical Energy Conversion, New York: Wiley, 1959.
[鐘95]鐘文政, DSP TMS 320C25原理與實習應用,匯高出版社, 1995.
[林李97]林傳生、李佩謙, 數位訊號處理器(DSP)簡介與應用, 全華圖書, 1997.
[劉許93]劉昌煥、許溢适, AC伺服系統的理論與設計實務, 文笙書局, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top