跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫亞賢
研究生(外文):Sun, Ya-sen
論文名稱:間規排向聚苯乙烯多晶態與多熔峰
論文名稱(外文):A Study on Relationships between Polymorphic Crystals and Multiple Melting Peaks in Crystalline Syndiotactic Polystyrene
指導教授:吳逸謨
指導教授(外文):W00, E. M.
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:103
中文關鍵詞:聚苯乙烯多熔峰多晶態
外文關鍵詞:syndiotactic polystyrenemeltiple melting peakspolymorphic crystals
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究利用微分掃描熱卡計(DSC)和X-ray繞射分析(WAXD)描述其加入不定形的聚苯乙烯(atactic polystyrene,a-PS)及熱處理條件的改變對間規排向(syndiotactic polystyrene,s-PS)聚苯乙烯的多熔峰行為和多晶態之相關性探討。由DSC結果顯示在熔融結晶的s-PS(Mw=241,000)試樣中,至少存在四個熔融峰,分別為熔融峰一、二、三和四(結晶溫度240℃)。而由X-ray繞射分析結果,在低溫恆溫結晶或由熔融態慢速冷卻非恆溫結晶同時形成α(α”)晶態(熔融峰2和4)和β(β’)晶態(熔融峰1和3),隨著結晶溫度愈高或是冷卻速度愈慢,則β(β’)晶態組成愈高,當結晶溫度高於260℃,分子堆積只形成β(β’)晶態。另外,由不定形的s-PS升溫結晶中,在低溫結晶(150℃)形成α’晶態(單一寬廣的熔融峰),而在高溫結晶(225~260℃)分子堆積形成α”晶態。再者,在DSC升溫掃描中多熔峰現象分別為不同晶態(雙熔峰)及不同厚度晶板(三熔峰)的熔融行為。除此之外,摻合a-PS也會影響s-PS的結晶行為,當a-PS摻合組成愈高(s-PS/a-PS=25/75)且冷結晶溫度愈高(250~260℃)則結晶形成β’晶態。由偏光觀察,冷結晶和熔融結晶球晶形態大不相同,且同時存在球狀、棒狀和盤狀等多種形態。
對於低分子量(Mw=63,000)的s-PS而言,熔融恆溫結晶只形成β’晶態(結晶溫度230~260℃),而冷結晶的結晶行為,在低溫結晶(150℃)或由不定形玻璃態s-PS慢速(10℃/min)升溫至245℃非恆溫結晶,分子堆積形成α’晶態,而在高溫結晶(225~260℃)形成α”晶態。由偏光觀察,熔融結晶球晶形態隨著結晶溫度不同而有所改變。至於冷結晶形態和熔融結晶球晶形態大不相同,同時存在球狀、棒狀和盤狀等多種形態。
Abstract
Unique thermal treatments were performed and differential scanning calorimeter (DSC), X-ray diffraction analysis and optical microscopy were used to characterize the multiple melting behavior and dominating crystal form(s) being developed in cold-crystallized syndiotactic polystyrene (s-PS, Mw=241,000) and its miscible blends with atactic polystyrene (a-PS) in comparison with melt-crystallized polystyrene. The DSC results revealed that there are four melting sharp peaks (Peak-1, -2, -3 and —4) for the melt-crystallized s-PS samples. The X-ray result suggested that melt-crystallization at lower than 260℃ produced a combination ofα—type (Peak-2 and Peak—4) and β—type crystals, or majority of β—type if at temperatures higher than 260℃.
In addition, the s-PS samples cold-crystallized produced only α-type (α’-type produced for s-PS annealing at 150℃ andα”-type produced for s-PS annealing at 225~260℃ ) crystal forms. DSC traces show only one peak (broad-base) for the s-PS cold-crystallized at 150℃ (or slow-heated from liquid-nitrogen quenched glass to 245℃) and multiple melting peaks if at temperatures at than 175℃. The multiple melting peaks for cold-crystallized s-PS samples are attributed to different lamellar thickness and crystal forms. For low a-PS content of the blend (s-PS/a-PS=75/25), there are onlyα-type (α’-type andα”-type) crystal forms in cold-crystallized sPS-base blends, but a combination ofα—type and β—type crystal forms are produced for high a-PS content (s-PS/a-PS=50/50,25/75).
For low molecular weight s-PS (Mw=63,000) samples, there is only β(β’)-type crystal in melt-crystallization and α-type crystal in cold-crystallization. By using optical microscopy, sheaf-like spherulites for s-PS samples melt-crystallized at higher temperatures (250~260℃) were observed and fully spherulites were observed if at low temperatures (230~240℃). In comparison with melt-crystallized s-PS, there are only tiny spherulites in cold-crystallized s-PS samples.
總目錄
頁數
中文摘要 I
英文摘要 II
總目錄 III
表目錄 IV
圖目錄 V
第一章、簡介 1
第二章、原理 4
2-1. Keith-Padden theory of Spherulitic Crystallization 4
2-2. Hoffman’s Nucleation Theory 7
第三章、實驗 9
3-1. 試樣名稱 9
3-2. 高分子摻合體製備 9
3-3. 儀器及樣品製備 9
第四章、結果與討論 11
4-1. 半結晶性間規排向聚苯乙烯多晶態與多熔融峰相關性 11
4-2. 間規排向聚苯乙烯之冷結晶系統探討 29
4-3. s-PS/a-PS 摻合體對冷結晶之影響 46
4-4. 低分子量(MW=63,000)s-PS對熔融結晶和冷結晶的影響 58
第五章、結論 86
參考文獻 89
附錄 92
參考文獻
1. N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, Macromolecules, 19, 2465 (1986).
2. Z. Sun, R. J. Morgan and D. N. Lewis, Polymer, 33, 600 (1992).
3. Y. Chatani, Y. Fuji, Y. Shimane and T. Ijitsu, Polym. Prepr. Jpn., 37, 428 (1988).
4. G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, and P. Corradini, Macromolecules, 23, 1539 (1990).
5. C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone, and P. Corradini, Polymer, 33, 1423 (1992).
6. E. M. Woo and F. S. Wu, Macromol. Chem. Phy., 199, 2041 (1998).
7. V. Vittoria, A. Ruvolo Filho and F. De Candia, J. Macromol. Sci. Phys., B31, 133 (1992) .
8. A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, and E. H. Andrews, Polym. Eng. Sci., 37, 153 (1997).
9. C. De Rosa, Macromolecules, 29, 8460 (1996).
10. B. K. Hong, W. H. Jo, S. C. Lee and J. Kim, Polymer, 39, 1793 (1998).
11. S. Z. D. Cheng,Z. Q. Wu and B. Wunderlich, Macromolecules, 20, 2802 (1987).
12. W. M. Prest, Jr., and D. J. Lucas, J. Appl. Phys., 46. 4136 (1975).
13. A. Xenopoulos, B. Wunderlich, J. Polym. Sci. Part B: Polym. Phys.,
28, 2271 (1990).
14. J. C. Stevenson and S. B. Clough, Polym. Eng. Sci., 28, 121 (1988).
15. R. S. Stein and A. Misra, J. Polym. Sci., Polym. Phys. Ed., 18, 327 (1980).
16. J. T. Yeh and J. Runt, J. Polym. Sci., Polym. Phys. Ed., 27, 1543, (1989).
17. H. J. Ludwig and P. Eyerer, Polym. Eng. Sci., 28, 143 (1988).
18. J. S. Chung and P. Cebe, Polymer, 33, 2312 (1992).
19. J. S. Chung and P. Cebe, Polymer, 33, 2325 (1992).
20. P. Huo, P. Cebe, Colloid Polym. Sci., 270, 840 (1992).
21. D. C. Bassett, R. H. Olley and I. A. M. Al Raheil, Polymer, 29, 1745 (1988).
22. D. J. Blundell, Polymer, 28, 2248 (1987).
23. H. Marand and A. Prasad, Macromolecules, 25, 1731 (1992).
24. A. J. Lovinger, S. D. Hudson and D. D. Davies, Macromolecules, 20, 2802 (1992).
25. D. Braun, M. Jacobs and G. P. Hellmann, Polymer, 35, 706 (1994).
26 N. Lefebvre, M. H. J. Koch, H. Reynaers and C. David, J. Polym. Sci. Part B: Polym Phys., 37, 1 (1999).
27. S. Z. D. Cheng, R. M. Ho, B. S. Hsiao and K. H. Gardner, Macromol. Chem. Phys., 197, 185 (1996).
28. R. M. Ho, S. Z. D. Cheng, B. S. Hsiao and K. H. Gardner, Macromolecules, 28, 1938 (1995).
29. E. M. Woo and F. S. Wu, J. Polym. Sci., Polym. Phys., 36, 2725 (1998).
30. E. M. Woo, M. L. Lee and Y. S. Sun, Polymer, accepted (1999).
31. H. D. Keith and F. J. Padden, Jr., J. Appl. Phys., 35, 1270 (1964).
32. H. D. Keith and F. J. Padden, Jr., J. Appl. Phys., 35, 1286 (1964).
33. H. D. Keith and F. J. Padden, Jr., J. Appl. Phys., 34, 2409 (1963).
34. J. D. Hoffman, Polymer, 24, 3 (1983).
35. J. D. Hoffman, Polymer, 23, 656 (1983).
36. L. H. Sperling, “Introduction to Physical Polymer Science,” 2nd edition, P247-238, New York (1992).
37. G. Gurra, C. De Rosa, V. M. Vitagliano, V. Petraccone and P. Corradini, J. Polym. Sci., Polym. Phys., 26, 265 (1991).
38. G. Gurra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini and F. E. Karasz, Polym. Commun., 32, 30 (1991).
39. Y. Chatani, Y. Shimane, T. Ijitsu and T. Yukinari., Polymer, 34, 1625 (1993).
40. E. M. Woo, Y. S. Sun, and M. L. Lee, Polymer, accepted(1999)
41. F. Auriemma, V. Petraccone, F. D Poggetto, C. De Rosa, G. Guerra, C. Manfredi, and P. Corradini, Macromolecules, 26,3772 (1993).
42. D. J. Blundell, J. J. Liggat and A. Flory, Polymer, 33, 2475 (1992).
43. D.J. Blundell, B. N. Osborn, Polymer, 24, 953 (1983).
44. Stephen Z. D. Cheng, M. T. Cao, and B. Wunderlich, Macromolecules, 19, 1868 (1986).
45. E. M. Woo and T. Y. Ko, Colloid Polym. Sci., 274, 1996 (1996).
46. T. Y. Ko and E. M. Woo, Polymer, 37, 1167 (1996).
47. C. Y. Chen and E. M. Woo, Polymer J., 27, 361(1995).
48. F. S. Wu, Master’s Thesis, Dept. Chem. Engr., National Cheng Kung Univ., Tainan (1997).
49. G. Pompe, L. Haubler and W. Winter, J. Polym. Sci.: Polym. Phys. Ed, 34, 211 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top