(3.239.192.241) 您好!臺灣時間:2021/03/02 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林政曉
研究生(外文):Cheng-xiuo Lin
論文名稱:燃燒法合成氮化鋁粉體新方法與量產技術開發
指導教授:鍾賢龍
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:87
中文關鍵詞:氮化鋁燃燒合成法氯化銨鋁箔
外文關鍵詞:Aluminum nitridecombustion synthesisNH4ClAluminum foil
相關次數:
  • 被引用被引用:11
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為氮化鋁合成新技術與量產製程開發。實驗方法分別以純鋁粉、鋁粉添加氯化銨或氮化鋁為反應物,盛裝反應物的容器以鋁箔或在鋁箔內側先鋪上一層氮化鋁粉再倒入反應物,此氮化鋁粉作用為最外側的鋁箔受熱反應後,代替鋁箔成為盛裝反應物的多孔性容器。反應物在低氮氣壓力1atm~5atm下進行氮化反應,以加熱功率1200W~1800W引燃反應物,可以看到燃燒波掃過整個反應物,將反應物轉化成氮化鋁且轉化率皆在95%以上。本實驗分別探討氯化銨、氮化鋁之添加量、反應物容器型式、反應物堆積密度及壓力大小,對轉化率的影響。研究結果發現,反應物的轉化率受到添加物、稀釋劑的添加量、反應物堆積密度及壓力的影響,且在下列的條件下可以得到高轉化率:(1)以純鋁粉為反應物時,於鋁箔容器內側再鋪上一層氮化鋁粉,使反應物不會有熔聚的現象;(2)反應物添加0.5~1%的氯化銨;(3)反應物的比例為鋁與氮化鋁為1:1時。此外,當反應物之堆積高密度時,轉化率不佳;當提高氮氣壓力時,可以使氮化反應更完全。
A new combustion synthesis (CS) process was developed for the production of Aluminum nitride powder. Sheet Aluminum powders mixing with or without NH4Cl or aluminum nitride were poured into a porous container made of Aluminum foil with one open end or coating a layer of aluminum nitride inside the Aluminum foil before pouring the reactant. The container was then placed in a stainless reactor filled with nitrogen pressure around 1-5 atm. A combustion synthesis reaction was ignited by heating the top surface of reactant powders and the heating power was about 1200W~1800W. Then, the reactant converted to Aluminum nitride, and a high product yield was achieved about 95% under above condition. In this experiment, several experimental parameters affecting the combustion synthesis reaction and product yield were investigated, e.g. The addition content of NH4Cl, aluminum nitride and mixtures of above two components, the morphology or dimension of container, the packing density of Aluminum powders, and pressures of surrounding nitrogen gas.
In the consequence of experiments, we found that:(1)when the reactant was only composed of pure Al powders, the porous container must be coated with aluminum nitride powders along the container firstly about 5 ~ 10㎜ thickness, before pouring the Al powders. (2)the optimum weight ratio of addition of NH4Cl is about 0.5% ~ 1%.(3)the optimum weight ratio of Al:AlN is about 1:1 and AlN with large particle size distribution favors the combustion reaction than fine AlN powders.
In addition, at high packing density, the product yield is not good, and increasing the surrounding N2 pressure could increase product yield.
摘要Ⅰ
AbstractⅡ
誌謝Ⅲ
目錄Ⅳ
表目錄Ⅵ
圖目錄Ⅶ
第一章 緒論1
1-1 SHS簡介1
1-2 氮化鋁的特性應用與合成5
第二章 原理8
2-1 燃燒反應熱力學8
2-2 燃燒反應動力學10
2-3 氮化物之燃燒合成11
2-3.1 熱力學限制11
2-3.2 動力學影響13
2-4 研究動機14
第三章 實驗裝置與藥品17
3-1 實驗裝置17
3-2 熱電偶溫度量測系統17
3-3 其他設備18
3-4 藥品18
第四章 實驗方法20
4-1 反應錠的製備20
4-2 氮化鋁合成反應的進行21
4-3 熱電偶溫度量測21
4-4 氫氣的收集與測量22
4-4.1 實驗目的22
4-4.2 實驗步驗22
4-5 產物之處理與分析23
第五章 結果24
5-1.1 使用片狀的純鋁粉當反應物24
5-1.2 使用鋁粉添加氮化鋁分當反應物25
5-1.3 使用氯化銨與鋁粉相混合27
5-1.4 反應物中同時添加氯化銨與氮化鋁29
5-1.5 在鋁箔容器內鋪上一層氮化鋁粉30
5-1.6 不同的堆積密度31
5-2 產物轉化率之計算31
5-3 產物的粒徑分析與氮氧分析33
第六章 討論34
6-1 使用純鋁粉為反應物34
6-2 添加氮化鋁34
6-3 添加氯化銨35
6-4 反應物外側鋪上一層氮化鋁36
6-5 反應錠的堆積密度與氮氣壓力37
第七章 結論38
參考文獻84
1. 吳朗,電子陶瓷-入門,p1-2,(1992).
2. Sander,H.K."High-tech Ceramics",C&E News,July 9,(1984).
3. Bowen,H.K."Basic Reseach Needs on High Temperature Cerics for Energy Application",Material Science and Engineering 44,1,(1980).
4. Takanori Watari"Shape of AIN powders prepared by Vapor Phase Reaction of AlCl3.NH3-N2",日本窯業協會學術論文誌,97 [8], 864,(1989).
5. Crider,J.F."Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials", Ceram. Eng.Sci.Proc.,3[9-10]:519,(1982).
6. S.Kumar,Key Engineering Materials,Vol 56-57,p183-188, (1991).
7. A.G.Merzhanov,"Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings",In Combustion and Plasma Synthesis of High-Temperature Materials,edited by Z.A.Munir and J.B.Holt,VCH,New York,USA,(1990),pp.1-53.
8. Z.A.Munir,"Synthesis of High Temperature Materials by Self-Propagating Combustion Methods", Ceram. Bull.,67 [2], (1988),pp.342-349.
9. Laurel M.Sheppard,Ceramic Bulletin,Vol.69,No.11,p1801-1812,(1990).
10. N.Kuramoto,H.Taniguchi,and I.Aso,Am.Ceram.Soc.Bull.,
68[4],p883-887,(1989).
11. Thomas J. Mroz, Jr., Ceramic Bulletin, Vol.71, No.5, p782,(1992).
12. G. Selvaduray and L. Sheet, Mater. Sci. Technol. 9, 463(1993).
13. F.J-H. Haussonne, Mater. Manufacturing Process 10(4), 717(1995).
14. A. G. Merzhanov and I. P. Borovinskaya, Combust. Sci. Technol. 10, 195(1975).
15. Y. Miyamoto, T. Nakamoto, M. Koizumi, and O. Yamado, "Ceramic-to-Metal welding by a pressurized Combustion Reaction." J. Mater. Res., 1, 7-9(1986)
16. J. Subrahmanyam, M. Vijayakumar,"Review:Self-propagating high-temperature synthesis." J. Mater. Sci., 27, 6249-6273(1992).
17. B.I.Khachin and A.G.Merzhanov,"Theory of Termal Propa-gating of a Chemical Reaction Front", Comb. Explos. Shock Wave,2[3],(1962),pp.22-27.
18. A.G.Strunina,T.M.Martemyanova,V.V.Barzykin and V. I. Ermakov,"Ignition of Gasless systems by a Combustion Wave",ibid,10,(1974),pp.449-455.
19. B.V.Novozhilov,"Burning Velocity of Propagating Front with Exothermic Reaction in Condensed Phase",Dokl.Akad.Nauk SSSR,141,(1961),pp.151-153.
20. A.G.Merzhanov,"The Theory of Stable Homogeneous Combustion of Condensed Substances", Combust. Flame, 13, (1969), pp.143-156.
21. Z.A.Munri and J.B,Holt,"The Combustion Synthesis of Refractory Nitrides",J.Mater.Sci.,22,(1987),pp.710-714.
22. J.Karpinski and S.Porowski,"High Pressure Thermodynamics of GaN",J.Crystal Growth,66,(1984),pp.11-20.
23. (a)李威昌,"燃燒法合成高性能材料:製程開發與反應機構探討",成功大學博士論文84年畢業。
(b)W.C.Lee,C.L.Tu,and S.L. Chung,J.Mater.Res.,10(3),
pp.774, (1995).
(c)中華民國專利第71873號、美國第5460794號.
(d)中華民國專利第67194號、美國第5453407號.
24. A.S.Mukasyan,V.M.MARTYNENKO,a.g.Merzhanov,I.P.Borvin-skaya,and M.Y.Bilinov,"The Mechanism and Laws of the Combustion of Silicon in Nitrogen",Combust.Explos.Shock Wave,22,(1986),pp.43-49.
25. Z.A.Munir and J.B.Holt,J.of Mater.Sci.,22,p710-714, (1987).
26. A.G.Merzhanov,I.P.Borovinskaya and Y. E. Volodin, Dokl. Phys. Chem.206(1973)833.
27. M.Eslaomloo-Grami and Z. A. Munir, J. Amer. Ceram. Soc. 73(1990)1235.
28. A.N.Pityulin,V.A.Sheherbakov,I.P.Borovinskaya and A.G. Merzhanov,Combust.Explos.Shock Waves USSR 15(1979)432.
29. M.Costantino and C. Firpo, J. Mater. Res., Vol.6, No.11, Nov.,(1991).
30. S.D.Dunmead and Z.A.Munir,Solid State Ionics 32/33 p474-481,(1989).
31. I.P.Borovinskaya and V.E.Loryan,Sov.powder Metall. Met. Ceram.,17,p851,(1978).
32. L.M.Sheppard,Advanced Materials&Processes,2,p25,(1986).
33. J.B.Holt,Industrial Research & Development,p89- 91, Apri.,(1983).
34. (a)翁彰嶽,"燃燒法合成氮化鋁粉體與鬚晶",成功大學碩士論文82年畢業。
(b)W.C.Lee,C.L.Tu,C.Y.Weng,and S. L. Chung, J. Mater. Res., 10(3),pp.774,(1995).
35. 陳泰源,"燃燒法合成氮化鋁粉體及產物特性研究",成功大學碩士論文85年畢業。
36. 余文良,"燃燒合成氮化鋁粉體製程開發",成功大學碩士論文86年畢業。
37. 歐名洲," 氮化鋁粉體之燃燒合成反應機構探討",成功大學碩士論文87年畢業。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔