(3.235.11.178) 您好!臺灣時間:2021/03/05 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李健豪
論文名稱:十二烷基硫醇螯合鈀超微粒子之製備
指導教授:陳東煌陳東煌引用關係
指導教授(外文):D., H., Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:68
中文關鍵詞:十二烷基硫醇溴化四辛胺
外文關鍵詞:palladiumdodecanethioltetra-n-octylammonium bromide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在25℃之相轉移系統中,以H2PdCl4為前驅物,四辛基溴胺為相轉移劑,聯胺或硼氫化鈉為還原劑,十二烷基硫醇為保護劑,製備鈀超微粒子,對其作特性分析,並探討各種製備變因對生成之鈀超微粒子的影響。
本研究利用硫醇為保護劑所製得之鈀超微粒子平均粒徑介於2.8~7.9nm之間,硫醇於其表面形成單分子保護層,將溶劑蒸發後所得之固體,能以極佳之分散性重新分散到它種溶劑中,經過數月仍相當穩定,顯示硫醇對鈀超微粒子具有相當良好的保護效果。將所得之鈀超微粒子進行TEM、電子繞射、EDX、XRD等的特性分析,可確認為純鈀超微粒子。
以聯胺為還原劑時,隨著鈀前驅鹽濃度的提高,鈀超微粒子有較小的粒徑分佈,又鈀超微粒子的粒徑隨著硫醇含量的提高而增大,但當硫醇含量超過某一臨界值時,則粒徑不再受硫醇含量所影響。以硼氫化鈉為還原劑時,雖提高鈀前驅鹽濃度會降低鈀超微粒子之粒徑,但亦伴隨著大顆粒的生成,出現兩種粒徑分佈。

In this thesis, the thiol-derivatised palladium ultrafine particles have been prepared in a two-phase liquid-liquid system using palladium chloride solution as the precursor, hadrazine and sodium borohydride as the reducing agend, and dodecanethiol as the protective agent. The resultant particles were characterized and the effects of various preparation factors on the formation of palladium ultrafine particles were investigated.
The average diameters of the palladium ultrafine particles obtained in this study were in the range of 2.83 to 7.85nm. Thiols tightly adsorbed on the particle surface and formed a monolayer. After evaporating the solvent, they can be recrystallized from the parent solution and have a nice dispersity which is stable for months, indicating the good protective effect of thiols for ultrafine particles. By the analyses of TEM, electron diffraction pattern, EDX, and X-ray diffraction, the resultant particles have been confirmed to be the pure palladium nanoparticles.
When hadrazine was used as the reducing agent, the palladium nanoparticles had a smaller diameter at higher palladium chloride concentration. With the increase of thiol content, the average diameter of palladium nanoparticles increased first and then approached to a constant. When sodium borohydride was used as the reducing agent, two particle size distribution have been observed at higher palladium chloride concentration.

中文摘要Ⅰ
英文摘要Ⅱ
總目錄Ⅲ
表目錄Ⅴ
圖目錄Ⅵ
第一章 緒論 1
1.1前言 1
1.2超微粒子之簡介 1
1.3偶合劑在奈米材料上之應用 10
1.4鈀金屬之簡介 15
1.5研究動機與內容 17
第二章 理論部分 18
2.1硫醇保護粒子之反應機構 18
2.2控制鈀前驅鹽穩定之理論 18
2.3硫醇保護粒子之理論 19
第三章 實驗部分 23
3.1藥品、儀器與材料 23
3.2前驅鹽與相轉移劑之配製 25
3.3鈀超微粒子之製備與特性分析 25
3.4鈀超微粒子之特性與結構分析 28
3.5鈀前驅鹽溶液之製備 28
第四章 結果與討論 29
4.1以聯胺為還原劑製備鈀超微粒子 29
4.2以硼氫化鈉為還原劑製備鈀超微粒子 48
4.3鈀超微粒子之生成機構 60
第五章 結論 62
參考文獻 64

1. Alder, B., J. and Wainwright, T., E., J. Chem. Phys., 27, 1208(1957).
2. Andres, R., P., Bielefeld, J., D., Henderson, J., I., Janes, D., B., Kolagunta., V., R., Kubiak, C., P., Mahoney, W., J. and Osifchin, R., G., Science, 273, 20(1996).
3. Antonietti, M., Basten, R. and Lohmann, S., Macromol. Chem. Phys., 196, 441(1996).
4. Berkovich, Y. and Garti, N., Colloids and Surfaces A, 128, 91(1997).
5. Bethell, D., Brust, M., Schiffrin, D., J. and Kiely, C., J. Electroanalytical Chem., 409, 137(1996).
6. Brandow, S., L., Chen, M., S., Wang, T., Dulcey, C., S., Calvert, J., M., Bohland, J., F., Calabrese, G., S. and Dressick, W., J., J. Electrochem. Soc., 144(10), 3425(1997).
7. Brust, M., Fink, J., Bethell, D., Schiffrin, D., J. and Kiely, C., J. Chem. Soc., Chem. Commun., 1665(1995).
8. Brust, M., Walker, M., Bethell, D., Schiffrin, D., J. and Whyman, R., J. Chem. Soc., Chem. Commun., 801(1994).
9. Carter, A., C. and Majetich, S., A., Mat. Res. Soc. Symp. Proc., 286, 81(1993).
10. Chow, G., M. and Gonsalves, K., E.(ed), Nanotechnology Molecularly Designed Materials, Washington, DC, p.154(1996).
11. Duff, D., G., Baiker, A. and Edwards, P., P., J. Chem. Soc., Chem. Commum., 96(1993).
12. Fendler, J., H., Chem. Rev., 87, 877(1987).
13. Gan, L., M., Zhang, L., H., Chan, H., S., O. and Chew, C., H., Materials Chemistry and Physics, 40, 94(1995).
14. Gao, M., Yang, Y., Yang, B., Bian, F. and Shen, J., J. Chem. Soc., Chem. Commum., 2779(1994).
15. Gao, M., Yang, Y., Yang, B., Shen, J. and Ai, X., Chem. Soc. Faraday Trans., 91(22), 4121(1995).
16. Giersig, M. and Mulvaney, P., J. Phys. Chem., 97, 6334(1993).
17. Gonsalves, K., E., Carlson, G., Chen, X., Kumar, J., Aranda, F., Perez, R. and Jose-Yacaman, M., J. Mater. Sci. Lett., 15, 948(1996).
18. Grabar, K., C., Brown, K., R., Keating, C., D., Stranick, S., J. and Natan, M., J., Anal. Chem., 69, 471(1997).
19. Han, M., Y., Zhou, L., Quek, C., H., Li, S., F., Y. and Wuang, W., Chemical Physics Letters, 287, 47(1998).
20. Hayashi, C., Physics Today, 40(12), 44(1987).
21. Khosravi, A., A., Kundu, M., Kuruvilla, B., A., Shekhawat, G., S., Gupta, R., P., Sharma, A., K., Vyas, P., D. and Kulkarni, S., K., Appl. Phys. Lett. 67(17), 23, 2506(1995).
22. Korgel, B., A. and Fitzmaurice, D., Phys. Rev. Lett., 80, 3531(1998).
23. Ishizuki, N., Torigoe, K., Esumi, K. and Meguro, K., Colloids and Surfaces, 55, 15(1991).
24. Korgel, B., A., Fullam, S., Connolly, S. and Fitzmaurice, D., J. Phys. Chem. B, 102, 8379(1998).
25. Kulkarni, G., U., Aiyer, H., N., Vijayakrishnan, V., Arunarkavalli, T. and Rao, C., N., R., J. Chem. Soc., Chem. Commun., 1545(1993).
26. Majetich, S., A., Carter, A., C. and Mccullough, R., D., Mat. Res. Soc. Symp. Proc., 286, 87(1993).
27. Murray, C., B., Norris, D., J. and Bawendi, M., G., J. Am. Soc., 115(19), 8706(1993).
28. Ohara, P., C., Leff, D., V., Heath, J., R. and Gelbart, W., M., Phys. Rev. Lett., 75, 3466(1995).
29. Ogawa, M., Langmuir, 13, 1853(1997).
30. Poirier, G., E. and Pylant, E., D., Science, 272(24), 1147(1996).
31. Porter, M., D., Bright, T., B., Allara, D., L. and Chidsey, C., E., D., J. Am. Chem. Soc., 109, 3559(1987).
32. Reetz, M., T. and Quaiser, S., A., Angew. Chem. Int. Ed. Engl., 34(20), 2240(1995).
33. Reetz, M., T., Helgbig, W., Quaiser, S., A., Stimming, U., Breuer, N. and Vogel, R., Science, 267(20), 367(1995).
34. Reetz, M., T., Winter, M. and Tesche, B., Chem. Commun., 147(1997).
35. Sarathy, K., Kulkarni, G., U. and Rao, C., N., R., Chem. Commun, 537(1997).
36. Sarathy, K., V., Raina, G., Yadav, R., T., Kulkarni, G., U. and Rao, C., N., R., J. Phys. Chem. B, 101, 9876(1997).
37. Schmid, G., Chemical Reviews, 92(8), 1709(1992).
38. Schmid, G., Maihack, V., Lantermann, F. and Peschel, S., J. Chem. Soc.,Dalton Trans., 589(1996).
39. Teranishi, T., Nakata, Ken., Miyake, M. and Toshima, N., Chemistry Letters, 277(1996).
40. Yu, W., Liu, M., Liu, H., Ma, X. and Liu, Z., J. Colloid and Interface Science, 208, 439(1998).
41. Weisbecker, C., S., Merritt, M., V. and Whitesides, G., M., Langmuir, 12, 3763(1996).
42. Zhu, T., Yu, H., Z., Wang, J., Wang, Y., Q., Cai, S., M. and Liu, Z., F., Chemical Physics Letters, 265, 334(1997).
43. 廖建勛,奈米高分子複合材料,工業材料,125期,108(1997).
44. 廖建勛,奈米材料的發展動態,化工資訊,第二卷,(1998).
45. 陳登銘,奈米材料簡介,Chemistry,56(3),195(1998).
46. 陳家俊,葉昭佩,趙之堯,硒化鎘奈米半導體晶體的合成及在薄膜製備上的應用,Chemistry,56(3),223(1998).
47. 陳鎮華,逆微胞系統中製備銀超微粒子之研究,國立成功大學化學工程研究所碩士論文(1997).
48. 張仕欣,王崇人,金屬奈米粒子的吸收光譜,Chemistry,56(3),209(1998).
49. 林敬二,楊美惠,楊寶旺,廖德章,薛敬和主編,英中日化學大辭典,高立圖書有限公司(1993).
50. 莊萬發編撰,超微粒子理論運用,復漢出版社(1995).
51. 蘇品書編撰,超微粒子材料技術,復漢出版社(1989).
52. 吳中樞譯述,近代無機化學,國立編譯館(1948).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔