(3.215.180.226) 您好!臺灣時間:2021/03/06 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈瑞富
研究生(外文):Jui-Fu Shen
論文名稱:焦爐氣淨化製程中的吸收問題之研究
論文名稱(外文):Gas Absorption in Coke-Oven Gas Treatment Process
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:100
中文關鍵詞:焦爐氣淨化製程吸收界面活性物質化學促進機制吸收選擇率鹼液酸氣
外文關鍵詞:Coke-Oven Gas Treatment ProcessAbsorptionSurfactantChemical EnhancementAbsorption Selectivityalkanolamine solutionAcid Gas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
吸收是工業上大量氣體淨化製程中採用的標準程序。本文以焦爐氣淨化製程為研究對象,針對其中實際遭遇的吸收問題擬定三類主題,進行探討。這三類研究主題分別是:(1)吸收液中界面活性物質在不同流場下對質傳之影響;(2)氨﹙NH3﹚/乙醇胺(MEA)/二乙醇胺(DEA)等三種鹼性稀薄水溶液吸收CO2之化學促進機制;(3)其他相關問題如:NH3稀薄水溶液吸收H2S之化學促進機制、氣相中含有氨對NH3水溶液吸收CO2之影響等。上述之研究除具實用價值外,也是學術上尚待探討的主題。
為了進行一系列吸收實驗,本文設計建立了四套不同流場型態的吸收器包括:攪拌槽吸收器、濕壁塔吸收器、潛入式噴流吸收器與流動式雙攪拌葉吸收器;吸收液除為實驗室配製之多種組成水溶液外,也包括取自工場的洗滌水(SCW);吸收氣體則包括二氧化碳、硫化氫、氨氣等;可取得各種不同條件下之吸收速率的實驗數據。同時,本文亦採用ASPEN PLUS模擬器模擬相關之化學吸收反應系統的熱力平衡。
焦爐氣淨化工場中洗滌水(SCW)經GC/MS鑑定為內含16種以上微量有機物質的水溶液,表面張力偏低。SCW內界面活性物質若使用活性碳去除後,表面張力明顯提昇,且在濕壁塔之下滑液膜流場中質傳係數顯著提高,成為原液之2倍左右;但在攪拌槽吸收器之流場中兩者之質傳係數則沒顯著差異。另外,在實驗室中模擬配製之三種界面活性劑水溶液的質傳抑制量在不同流場下也有相似的結果。本文亦發現界面活性物質水溶液在濕壁塔吸收器中的質傳抑制量與表面壓有關聯,可以用一半經驗式合理描述。本文更以研究結果為基礎,提出一焦爐氣吸收製程改善案。
NH3/MEA/DEA水溶液吸收CO2的程序中,液相內涉及複雜的多重化學反應。雖然文獻上在預測其吸收促進因子時,通常只考慮單一的氨基甲酸根形成反應之"兩性離子促進機制",但本文利用嚴謹的熱力模式計算不同起始濃度和吸收負載下之化學平衡組成,發現:只有在高濃度及低CO2吸收負載的條件下,才能用單一的氨基甲酸根形成反應予以簡化近似;隨著起始濃度降低和CO2吸收負載增加,液相中的氨基甲酸根穩定性逐漸降低,一部份氨基甲酸根會繼續水解而釋出分子態NH3/MEA/DEA,並擴散回氣液界面,再與CO2反應,促進吸收。因此本文假設在巨相中化學反應為多重反應且趨近化學平衡,提出"巨相平衡促進機制"。利用吸收實驗數據檢驗上述兩種反應促進機制,結果顯示:針對NH3水溶液吸收CO2時之化學促進因子,巨相平衡促進機制的預測準確度較高。而MEA/DEA水溶液吸收CO2之程序中,由於MEACOO-及DEACOO-的水解速率較慢,所以在吸收程序初期(本文之吸收實驗條件為CO2吸收負載小於0.3範圍),兩性離子促進機制的預測準確度較高,但當吸收累積的時間增長,使得水解反應進行程度累積量增加,結果巨相平衡促進機制反而比兩性離子促進機制有較準確的預測。
至於稀薄NH3水溶液吸收H2S之程序,本文實驗結果顯示以單一瞬時反應為化學促進機制之吸收模式,能準確地預測此系統之化學促進因子。針對氣相中含有NH3對NH3水溶液吸收CO2速率的影響之研究,實驗數據則顯示確實可顯著地提高吸收速率(本文實驗例可達2倍以上);而且實驗結果和本文考慮NH3在氣液界面質傳行為之吸收模式的預測值相近;此一結果也意味:控制NH3分壓是一促進酸氣吸收速率的實用性技術。另本文也完成焦爐氣淨化工場三座串聯吸收塔塔內氣、液相組成分佈之測量,所得之數據將為後續混合氣吸收選擇率研究之重要參考資料。
Absorption technology has long occupied a crucial position in the industrial gas treatment processes. Refer to the existing absorption problems encountered in the coke-oven gas treatment plant of China Steel Corporation, three absorption topics were defined and studied in this work. They are:(1) surfactant effects on gas absorption under different flow patterns, (2) promotion mechanism for CO2 absorption into dilute aqueous NH3/MEA/DEA solutions, and (3) chemical enhancement for H2S absorption into dilute aqueous NH3 solutions and the effect of NH3 vapor on the acid gas removal by using aqueous NH3 solutions. Detailed understanding of the above absorption topics is both of industrial importance and of academic interest.
Four typical types of absorber were designed and built for simulating the necessary absorption condition with diversified flow patterns. Except for the laboratory prepared absorbents, i.e. pure water, surfactant solutions, and chemical absorbents, an industrial absorbent sampling from a coke-oven gas treatment plant was also used in this work. A series of absorption tests were conducted and their corresponding absorption rates were carefully measured. Based on the experimental data and/or the related thermodynamic analysis result, the appropriate quantitative mechanism/expression for every absorption topic was proposed.
The effect of organic impurities in industrial stripped coal water (SCW) on the absorption of CO2 was measured experimentally. Removal of these impurities via activated carbon showed a marked improvement in interphase mass transfer of a vertical wetted-wall column absorber. However, this benefit was not found in a stirred-cell absorber, in which different flow pattern from that in wetted-wall column absorber is expected. An ad hoc systematic study on the effects of three deliberately added surfactants on gas absorption by pure water in three different absorbers with different flow patterns was thereafter conducted. The experimental results reveal that absorption deterioration also prevails only in vertical wetted-wall column absorber and the reduction in liquid phase mass transfer by the addition of surfactant can be satisfactorily correlated with surface pressure of solutions. This indicates that the effect of the industrial impurities in SCW on gas absorption may successfully be simulated under the same flow pattern by a surfactant solution with the same surface pressure. A possible modification of the existing coke-oven gas (COG) treatment process for the benefit of absorption enhancement was finally proposed.
Chemical enhancement factors for CO2 absorption into dilute aqueous NH3/MEA/DEA solutions in a batch stirred-cell absorber were experimentally determined over a wide range of CO2 loadings. The experimental data are used to examine the validity of two promotion mechanisms: the zwitterion mechanism, by which the carbamate formation is the sole main reaction occurring in the liquid, and the bulk-equilibrium mechanism, by which both the carbamate formation and the carbamate hydrolysis are two fast main reactions to enable the chemical equilibrium to prevail in the bulk-liquid. Concerning the above-mentioned two mechanisms, zwitterion mechanism is the well-known in literature, while the bulk-equilibrium mechanism is proposed in this work. For the absorption of CO2 into partially carbonated aqueous NH3 solutions, the chemical enhancement factors predicted by the bulk-equilibrium mechanism are in good agreement with the experimental data available. In cases of CO2 absorption into dilute aqueous MEA/DEA solutions, the results reveal that the zwitterion mechanism satisfactorily predicts the experimental data for CO2 loadings below 0.3, while the bulk-equilibrium mechanism is more competent in describing those for CO2 loadings larger than 0.5. A detailed rigorous thermodynamic simulation shows that the equilibrium extent of the carbamate hydrolysis, which generates free NH3/MEA/DEA in the bulk and hence promotes absorption, increases with the decrease of the initial amine concentration and with the proceeding of CO2 loadings. The cause of the difference on the appropriate promotion mechanisms for the absorption of CO2 by dilute aqueous NH3/MEA/DEA solutions is explained by the difference on the hydrolysis rates of NH3/MEA/DEA carbamates.
Regarding H2S absorption into dilute aqueous NH3 solution, the absorption model based on an irreversible instantaneous reaction has been proved to be appropriate in predicting the chemical enhancement factor.
The minor addition of NH3 vapor into the gas phase has experimentally shown a remarkable promotion of CO2 absorption into an aqueous NH3 solution. The absorption model presented in this work can fairly estimate the quantitative extent of this promotion. The result indicates that adding NH3 vapor into the gas phase to accelerate the removal rate of acid gas is practical. Finally, a set of data consisting of the measured composition along three absorbers of a coke-oven gas treatment plant is presented in this work.
封面
目錄 頁數
摘要
ABSRTACT
目錄
表目錄
圖目錄
符號說明
第一章 前言
1-1 焦爐氣淨化製造過程中的吸收問題及其意義
1-2 論文架構和目地
第二章 文獻回顧
2-1 界面活性物質對吸收之影響
2-2 NH3/MEA/DEA水溶液吸收CO2之化學促進機制
2-3 其它相關吸收問題
2-3-1 NH3水溶液吸收H2S之化學促進機制
2-3-2 氣相中NH3分壓惰NH3水溶液吸收CO2之影響
2-3-3 NH3水溶液吸收H2S/CO2混合氣之選擇率
第三章 實驗
3-1 實驗材料
3-2 吸收裝置和值傳送速率量測方法
3-2-1 攪拌槽吸收器
3-2-2 濕壁塔吸收器
3-2-3 潛入式噴吸收器
3-2-4 流動式雙攪拌葉吸收器
3-3 化驗項目和方法
第四章 吸收中界面活性物質在不同流場下對質傳係數之影響
4-1 三種吸收器的流場
4-2 製程洗滌水中可溶性界面活性物質之鑑定與去除
4-3 製程洗滌水中可溶性界面活性物質在不同流場下對吸收之影響
4-3-1 濕壁塔吸收器
4-3-2 攪拌槽吸收器
4-4 三種單一界面活性劑在不同流場下對吸收之影響
4-4-1 濕壁塔吸收器
4-4-2 攪拌槽吸收器
4-4-3 潛入式噴吸收器
4-5 從研借結果衍生之製程改善案
第五章 NH3/MEA/DEA三種鹼性稀薄水溶液吸收CO2之化學促進機制
5-1 化學反應與熱力學平衡
5-2 巨相平衡促進機制與兩性離子促進機制
5-3 實驗結果與兩種極端化學促進機制之比較
5-3-1 NH3-CO2-H2O系統
5-3-2 MEA-CO2-H2O系統與DEA-CO2-H2O系統
第六章 其他相關吸收主題
6-1 稀薄NH3水溶液吸收H2S之化學促進機制
6-1-1 NH3-H2S-H2O之熱力學平衡分析和化學促進原因子預測方法
6-1-2 實驗結果和預測值之比較
6-2 氣相中NH3分壓對NH3水溶液吸收CO2之影響
6-2-1 理論分析
6-2-2 CO2之吸收實驗結果和預測值
6-3 NH3水溶液吸收H2S/CO2混合氣之吸收選擇率
6-3-1 熱力學分析
6-3-2 焦爐氣淨化工場吸收塔內氣液相組成份佈量測
6-3-3 討論
第七章 結論與後續工作建議
7-1 結論
7-1-1 吸收液中界面活性物質在不同流場下對質傳之影響
7-1-2 NH3/MEA/DEA 三種鹼性稀薄水溶液吸收 CO2之化學促進機制
7-1-3 其他相關之吸收主題
7-2 後續工作建議
參考文獻
附錄A :焦爐氣淨化製程?明
附錄B :Electrolyte-NRTL 熱力學模式介紹
中英關鍵詞對照表
自述
著作目錄
Al-Ubaidi, B. H. and M. S. Selim, "Role of Liquid Reactant Volatility in Gas Absorption with an Exothermic Reaction," AIChE J., 38, 363-376 (1992).
Andrew, S. P. S.; "A Rapid Method of Measuring Absorption Rates and its Application to CO2 Absorption into Partially Carbonated Ammonia Liquid," Chem. Eng. Sci., 3, 279-286 (1954).
Aspen Technology, Inc., ASPEN PLUS release 9, Cambridge, Massachusetts (1996).
Astarita, G. and D. W. Savage, "Gas Absorption and Desorption with Reversible Instantaneous Chemical Reaction," Chem. Eng. Sci., 35, 1755-1764 (1980).
Astarita, G., D. W. Savage and J. M. Longo, "Promotion of CO2 Mass Transfer in Carbonate Solution," Chem. Eng. Sci., 36, 581-588 (1981).
Astarita, G., D. W. Savage and A. Bisio, Gas Treating with Chemical Solvents, p. 48, John Wiley & Sons, New York (1983).
Austgen, D. V., G. T. Rochelle, X. Peng, and C. C. Chen, "Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation," Ind. Eng. Chem. Res., 28, 1060-1073 (1989).
Austgen, D. V., G. T. Rochelle, and C. C. Chen, "Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H2S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixtures of MDEA with MEA or DEA," Ind. Eng. Chem. Res., 30, 543-555 (1991).
Banerjee, S., D. Scott, and E. Rhodes, "Mass Transfer to Falling Wavy Liquid Film in Turbulent Flow," I&EC Fundamentals, 7, 22-27 (1968).
Banerjee, S., "Turbulence Structures," Chem. Eng. Sci., 47, 1793-1817 (1992).
Berg, J. C., and A. Acrivos, "The Effect of Surface Active Agents on Convection Cells Induced by Surface Tension," Chem. Eng. Sci., 20, pp. 737-745 (1965).
Blauwhoff, P. M. M., G. F. Versteeg, and W. P. M. van Swaaij, "A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions," Chem. Eng. Sci., 39, 207-225 (1984).
Brian, P. L. T., J. E. Vivian, and D. C. Matiatos, " Interface Turbulence during the Absorption of Carbon Dioxide into Monoethanolamine," AIChE J., 13, 28-36 (1967).
Burnett J. C., Jr., and D. M. Himmelblau, "The Effect of Surface Active Agents on Interphase Mass Transfer," AIChE J., 16, 185-193 (1970).
Caplow, M., " Kinetics of Carbamate Formation and Breakdown," Am. Chem. Soc., 90, 6795-6803 (1968).
Caskey, J. A. and W. B. Barlage Jr., "A Study of the Effects of Soluble Surfactants on Gas Absorption Using Liquid Laminar Jets," J. Colloid Interface Sci. 41, 52-62 (1972).
Chen, C. C., H. I. Britt, J. F. Boston and L. B. Evans, "Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte System with Molecular Solutes," AIChE J., 25, 820-831 (1979).
Chen, C. C., H. I. Britt, J. F. Boston and L. B. Evans, "Local Composition Model for Excess Gibbs Energy of Electrolyte Systems," AIChE J., 28, 588-596 (1982).
Chen, C. C., and L. B. Evans, "A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems," AIChE J., 32, 444-454 (1986).
Clark, D. M., M. Rafal and N. C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics, pp. 606-608, AIChE, New York, USA (1986).
Danckwerts, P. V., and M. M. Sharma, "The Absorption of Carbon Dioxide into Solutions of Alkalis and Amines (with some notes on hydrogen sulphide and carbonyl sulphide)," Chem. Engr., Oct., CE244-CE280 (1966).
Danckwerts, P. V., and K. M. McNeil, "The Absorption of Carbon Dioxide into Aqueous Amine Solutions and the Effects of Catalysis," Trans. Instn Chem. Engrs, Vol. 45,T32-T49 (1967).
Danckwerts, P. V., Gas-Liquid Reactions, pp. 247-250, McGraw-Hill, New York (1970).
Davies, J.T. and E.K. Rideal, Interfacial Phenomena, Acdemic Press, New York (1963).
Davies, J. T., Turbulence Phenomena, Academic, New York, NY (1972).
Davies, J. T. and F. J. Lozano, "Turbulence Characteristic and Mass Transfer at Air-Water Surfaces," AIChE J., 25, 405-415 (1979).
Davies, J. T. and F. J. Lozano, "Turbulence and Surface Renewal at the Clean Surface of a Stirred Vessel," AIChE J., 30, 502-505 (1984).
DeCoursey, W. J., "Absorption with Chemical Reaction. Development of a New Relation for Danckwerts Model," Chem. Eng. Sci., 29, 1867-1872 (1974).
Edwards, T. J., G Maurer, J. Newman, J. M. Prausnitz, "Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes," AIChE J., 24, 966-975 (1978).
Edwards, D. G., H. Brenner and D. T. Wasan, Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, MA (1991).
Elliott, M. A., ed., Chemistry of Coal Utilization, Second Supplementary Volume, Chapter 18, Wiley, New York, NY (1981).
Glasscock, D. A., J. E. Critchfield, and G. T. Rochelle, "CO2 Absorption/Desorption in Mixtures of Methyldiethanolamine with Monoethanolamine or Diethanolamine," Chem. Eng. Sci., 46, 2829-2845 (1991).
Glasscock, D. A., Modelling and Experimental Study of Carbon Dioxide Absorption into Aqueous Alkanolamines, Ph. D. Dissertation of the University of Texas at Austin, USA (1990).
Golovin, A. A., "Mass Transfer under Interfacial Turbulence: Kinetic Regularities," Chem. Eng. Sci., 47, 2069-2080 (1992).
Hatch, T. F. and R. L. Pigford; "Simultaneous Absorption of Carbon Dioxide and Ammonia in Water," Ind. Eng. Chem. Fundamentals, 3, 209-214 (1962).
Ito, A., S.K. Choudhury and T. Fukano, "Heated Liquid Film Flow and its Breakdown Caused by Marangoni Convection," JSME International J., Series 2, 33, No. 1, pp. 128-133 (1990).
Katti, S. S., "Gas-Liquid-Solid Systems: an Industrial Perspective," Trans. IChemE, 73, 595-607 (1995).
King, C. J., Separation Processes, 2nd ed., McGraw-Hill, New York, NY (1980).
Kohl, A. L. and F. C. Riesenfeld, Gas Purification, 4th ed., Gulf Publishing, Houston, TX (1985).
Lightfoot, E.N., Estimation of Heat and Mass Transfer Rates, AIChE Continuing Education Series 4, New York, Chap. 2 (1969).
Littel, R. J., G. F. Versteeg, and W. P. M. Van Swaaij, "Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions? I. Zwitterion Deprotonation Kinetics for DEA and DIPA in Aqueous Blends of Alkanolamins," Chem. Eng. Sci., 47, 2027-2035 (1992).
Luk, S. and Y. H. Lee, "Mass Transfer in Eddies Close to Air-Water Interface," AIChE J. 32, 1546-1554 (1986).
Lin,Y.H., J. F. Shen and J. S. Lee, "Determination of Organic Compounds in Coal Water," China Steel Technical Report 8, 108-113 (1994).
Lee, Y. H., G. T. Tsao and P. C. Wankat, "Hydrodynamic Effect of Surfactants on Gas-Liquid Oxygen Transfer," AIChE J. 26, 49-55 (1980).
Llorens, J., C. Mans and J. Costa, "Design of Absorption Column in the Presence of Surfactant," I&EC Process Des. Dev. 25, 305-307 (1986).
Llorens, J., C. Mans and J. Costa, "Discrimination of the Effects of Surfactants in Gas Absorption," Chem. Eng. Sci. 43, 443-450 (1988).
Lu, H. H., Y. M. Yang and J. R. Maa, "Surfactant Effects on Absorption in the Presence of Induced Interfacial Turbulence," AIChE J. 43, 1909-1913 (1997).
Miller, C. A. and P. Neogi, Interfacial Phenomena-Equilibrium and Dynamic Effects, Marcel Dekker, New York, NY (1985).
Moo-Young, M. and M. Shoda, "Gas Absorption Rates at the Free Surface of a Flowing Water Stream. Effects of a Surfactant and of Surface Baffles," I&EC Process Des. Dev. 12, 410-414 (1973).
Pangarkar, V. G., "Gas Absorption with Reaction in a Solution Containing a Volatile Reactant," Chem. Eng. Sci., 29, 877-882 (1974).
Pangarkar, V. G.and M. M. Sharma, "Simultaneous Absorption and Reaction of Two Gases: Absorption of CO2 and NH3 in Water and Aqueous Solutions of Alkanolamines," Chem. Eng. Sci., 29, 2297-2306 (1974).
Pelkie, J. E., J. Concannon and D. B. Manley, "Product Distribution in the CO2-NH3-H2O System from Liquid Conductivity Measurements," Ind. Eng. Chem. Res., 31, 2209-2215 (1992).
Perry, R. H. and D. Green, eds. , Perry''s Chemical Engineers'' Handbook, 6th ed., p. 3-258, McGraw-Hill, Singapore (1984).
Pinsent, B. R. W., L. Pearson and F. J. W. Roughton, "The Kinetics of Combination of Carbon Dioxide with Ammonia," Trans. Faraday Soc., 1594-1598 (1956).
Prapaitrakul, W. and A. D. King, "The Solubility of Gases in Aqueous Solutions of Docyltrimethyl- and Cetyltrimethylammonium Bromide," J. Colloid Interface Sci. 106, 186-193 (1985).
Rinker, E. B., S. S. Ashour, and O. C. Sandall, "Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine," Ind. Eng. Chem. Res., 35, 1107-1114 (1996).
Rinker, E. B., O. T. Hanna, and O. C. Sandall, "Asymptotic Models for H2S Absorption into Single and Blended Aqueous Amines," AIChE J., 43, 58-63 (1997).
Sartori, G. and D. W. Savage, " Sterically Hindered Amines for CO2 Removal from Gases," Ind. Eng. Chem. Res., 22, 239-249 (1983).
Seo, Y. G. and W. K. Lee, "Single-Eddy Model for Random Surface Renewal," Chem. Eng. Sci., 43, 1395-1402 (1988).
Shaikh, A. A. and A. Varma, "Gas Absorption with Chemical Reaction: the Case Involving a Volatile Liquid Reactant," Chem. Eng. Sci., 39, 1639-1641 (1984).
Shaikh, A. A., A. Jamal, and S. M. Zarook, "Boundary-value Problems in Reactive Gas Absorption," Chem. Eng. J., 57, 27-38 (1995).
Shen, J. F., Y. H. Lin, and J. R. Yeh, "Control the Stripping Efficiency of Pollutants from Coke Plant Effluent," Proc. 3rd International Cokemaking Congress, 166-169 (1996).
Sherwood, T. K., R. L. Pigford and C. R. Wilke, Mass Transfer, McGraw-Hill, New York, NY (1975).
Slattery, J.C., Interfacial Transport Phenomena, Springer-Verlag, New York, Chap. 6 (1990).
Straub, J., The Role of Surface Tension for Two-phase Heat and Mass Transfer in the Absence of Gravity, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, pp. 103-125(1993).
Van Swaaij, W. P. M. and G. F. Versteeg, " Mass Transfer Accompanied with Complex Reversible Reactions in Gas-Liquid System: an Overview," Chem. Eng. Sci., 47, 3181-3195 (1992).
Vazquez, G., G. Antorrena , F. Chenlo and F. Paleo, "Absorption of SO2 by Aqueous NaOH Solutions in the Presence of a Surfactant," Chem. Eng. Technol. 11, 156-162 (1988).
Yang, R., Heat and Mass Transfer in Laminar Wavy Film Absorption with the Presence of Non-absorbable Gases, Ph. D. Dissertation of Arizona State University, USA(1987).
李夢輝,"氣體淨化處理," 化工,第43卷第五期,78-88 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔