(3.237.178.91) 您好!臺灣時間:2021/03/04 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何愈
研究生(外文):Yuh, Ho
論文名稱:餵食半乳糖大白鼠水晶體蛋白的研究
論文名稱(外文):The Study of Crystallins from Galactose-fed Rat Lenses
指導教授:黃福永
指導教授(外文):Fu-Yung, Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:168
中文關鍵詞:半乳糖白內障水晶體蛋白蛋白分子伴護近紅外光傅氏轉換拉曼光譜
外文關鍵詞:galactosecataractcrystallinmolecular chaperoneNIR-FT Raman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經由數種生物化學及生物物理的方法,本研究針對餵食半乳糖誘發大白鼠白內障之水晶體及其組成的alpha-,beta-及gamma-水晶體蛋白做一全面的分析。由一維、二維電泳與膠體過濾層析分析的結果指出,在產生半乳糖性白內障的過程中:1) 包括蛋白質C-端延伸片段的截斷在內,A-水晶體蛋白遭受到許多的轉譯後修飾,但整個-水晶體蛋白集結的分子量並無明顯的改變;2)隨著B1a-水晶體蛋白在水溶性蛋白部份已偵測不到,H-水晶體蛋白的量也減少; 3) -水晶體蛋白隨著水晶體中心產生混濁而開始沉澱; 4) 在餵食半乳糖飼料的前二週,高分子量集結水晶體蛋白(HMWA)的量比正常飼料對照組的來的高,然後隨著晶體混濁延伸到核質部而減少。另將水晶體蛋白以電泳分離後,利用對糖分子有特異性的過碘酸氧化-亞胺鍵結法,與Lectin結合法偵測,發現在半乳糖性白內障的生成過程中,糖分子並沒有結合到水晶體蛋白上。進一步藉著檢視-水晶體蛋白防止-水晶體蛋白的熱沉澱及胰島素集結的能力時,發現隨著糖性白內障的進行,-水晶體蛋白的蛋白分子伴護功能降低;並藉由圓二色光譜及螢光光譜儀,發現此功能的降低與其二級結構中-摺板成份的減少及整個-水晶體蛋白四級結構的表面性質的改變有關。此外由整顆正常及白內障水晶體的近紅外光傅氏轉換拉曼光譜偵測結果,發現白內障的水晶體蛋白二級結構並無顯著的改變,但水晶體蛋白中酪胺酸及色胺酸附近的環境已有改變,這反映出蛋白質的三級結構已經改變;對於利用拉曼光譜儀偵測硫氫基與雙硫鍵訊號變化的探討發現,硫氫基轉換為雙硫鍵的現象並非一定與水晶體的混濁有絕對直接的關係。綜合以上結果顯示出在半乳糖誘發大白鼠產生糖性白內障的過程中,受到改變的水晶體蛋白,各以不同方式影響整個水晶體的完整性,因而使得水晶體蛋白的階層性受到衝擊而造成晶體混濁。
The changes of -, - and -crystallins obtained from galactosemic rat lenses have been examined by various biochemical and biophysical measurements. During the development of galactose-induced cataract, one- and two-dimensional electrophoretic, gel filtration chromatographic and amino acid analyses reveal that 1) A-crystallins underwent extensive post-translational modifications, including C-terminal truncation; however, no effect on the aggregation of -crystallin was observed; 2) B1a-crystallin, a major component of H-crystallin fraction, was not found in water-soluble fraction of lens protein, causing a concomitant loss of H-crystallin; 3) -crystallin precipitated out when the formation of cataract extended lens nucleus; 4) high molecular weight aggregate from galactosemic rat lenses increased when compared to that from control group for the first two weeks, then decreased as nuclear opalescence was formed. Lens proteins were also separated by electrophoresis and were visualized by subsequent carbohydrate-specific staining (such as, periodic acid Schiff staining and lectin overlay). No bounded sugar moiety was detected in lens proteins. Further, by measuring the chaperone ability of -crystallin toward thermally-induced -crystallin aggregation and dithiothreitol-induced insulin aggregation, it was found that the chaperone activity of -crystallin decreases during cataractogenesis. Circular dichroism and fluorescence spectroscopic studies show that the loss of chaperone activity is ascribed to a loss of 16% -sheet structure and a changed surface characteristic. The reduced chaperone activity may result in the failure in maintaining the lens in a transparent state. Moreover, the cataractous intact lens has been analyzed by near-infrared Fourier transform Raman spectroscopy. It was found that secondary structure of lens proteins had not been changed, whereas the microenvironment of tyrosine and tryptophan had changed, reflecting the alternation of tertiary structure. Raman spectroscopic study shows that that the conversion of sulfhydryl groups to disulfide bonds is not necessarily related to the development of lens turbidity. The overall results indicate damaged lens proteins affected lens integrity in different ways, which leads to the damage of the hierarchy of lens proteins, then causes the formation of cataract.
封面
頁次
中文摘要
英文摘要
目錄
表目錄
圖目錄
符號說明
第一章
半乳糖飼料對大白鼠水晶體蛋白的影響
一 引言
二 實驗
材料
儀器設備
方法
誘發大暢鼠產生糖性白內障
水晶體蛋白膠體過濾層析
水晶體蛋白電泳分析
一維電泳分析
二維電泳分析
三 實驗結果
水晶體蛋白膠體過濾層析分析
水晶體蛋白一維電泳分析
水晶體蛋白二維電泳分析
四 討論
五 參考文獻
第二章
餵食半孔糖飼料大白鼠水晶體蛋白上的修飾
一 引言
二 實驗
胺基酸成份分析
西方墨點法
硫氫基的測量
醣蛋白的偵測
PAS染色法
Lectin偵測法
三 實驗結東與討論
大白鼠水晶體蛋白胺基酸成份分析
大暢鼠水晶體蛋白醣化分析
四 參考文獻
第三章
α-水晶體蛋白之蛋白分子伴護功能的研究
一 引言
二 實驗
材料儀器設備
方法
大白鼠α-晶狀素蛋白分子伴護功能的分析試驗
熱沈澱防護試驗
胰島素沈澱防護試驗
色胺酸特性螢光的測量
ANS螢光分析
圓二色光譜的測量
高效能液相層析分析
三 實驗結果討論
晶狀素蛋白的熱穩定性
α-水晶體蛋白防止其他晶狀素蛋白熱變性沈澱
α-水晶體蛋白結構的熱變性
尿素對α-水晶體蛋暢防止其他晶狀素蛋白熱變性沈澱能力的影響
α-水晶體蛋暢防止胰島素結沈澱分析
餵食半乳糖飼料對α-水晶體蛋白分子伴護功能的影響
圓二色光譜的分析
ANS螢光光譜分析
四 參考文獻
第四章
近紅外光傅氏轉換拉曼光譜對大白鼠水晶體蛋白的研究
一 引言
二 實驗
材料與儀器設備
三 實驗結果
半乳糖誘發白內大白鼠水晶體的拉曼圖譜
酪胺酸及色胺酸的周遭環境在糖性白內障過程中的變化
硫氫基與雙硫鍵在產生半乳糖性白內障過程中的轉變
四 討論
五 參考文獻
Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922.
Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby C., Tickle, I., Turnell, B. and Wistow, G. (1981) The molecular strucutre and stability of the eye lens: X-ray analysis of -crystallin II. Nature, 289, 771-777.
Boyle, D. and Takemoto, L. (1994) Characterization of - and - complex: evidence for an in vivo functional role of -crystallin as a molecular chaperone. Exp. Eye Res. 58, 9-16.
Broide, M. L., Berland,C. R., Pande, J., Ogun, O. O. and Benedek, G. B. (1991) Binary-liquid phase separation of lens protein solutions. Proc. Natl. Acad. Sci. USA 88, 5660-5664.
Carper, D. A., Russel, P., Shinohara, T. and Kinoshita, J. H. (1985). Differential synthesis of rat lens proteins during development. Exp. Eye Res. 40, 85-94.
Chirgadze, Y., Nevskaya, N., Vernoslova, E., Nikonov, S., Sergeev, Y., Brazhnikov, E., Fomenkova, N., Lunin, V. and Urzhumtsev, A. (1991) Crystal structure of calf eye lens gamma-crystallin IIIb at 2.5A resolution: its relation to function. Exp. Eye Res. 53, 295-304.
Chirgadze, Y., Sergeev, Y., Fomenkova, N. P. and Oreshin, V. D. (1981) Polypeptide chain pathway in -crystallin IIIb from calf lens at 3 A resolution. FEBS Lett. 131, 81-84.
Das, B. K., Liang, J. J.-N. and Chakrabarti, B. (1996) Heat-induced conformational change and increased chaperone activity of lens -crystallin. Curr. Eye Res. 16, 303-309.
Delaye, M. and Tardieu, A. (1983). Short-range order of crystallin proteins account for eye lens transparency. Nature, 302, 415-417.
Garilick, R. L., Mazer, J. S., Chylack Jr. L. T., Tung, W. H. and Bunn F. (1984) Nonenzymatic glycation of human lens crystallin. Effect of aging and Diabetes Mellitus. J. Clin. Invest. 74, 1742-1749.
Harding, J. J. and Dillen, K. J. (1976) Structural protein of the mammalian lens: a review with emphasis on the change in development, aging and cataract. Exp. Eye Res. 22, 1-73.
Horwitz, J., Huang, Q.-L., Ding, L.-L. and Bova, M. P. (1998) Lens -crystallin: chaperone-like properties. Method Enzymol. 290, 365-383.
Huang, W.-Q., Zhang, J.-P. and Fu, S.-C. J. (1990) Differential effects of galactose-induced cataractogenesis on the soluble crystallins of rat lens. Exp. Eye Res. 51, 79-85.
Ishimoto, C., Goalwin, P. W., Sun, S.-T., Nishio, I. And Tanaka, T. (1979) Cytoplasmic phase separation in formation of galactosemic cataract in lenses of young rats. Proc. Natl. Acad. Sci. USA 76, 4414-4416.
Jaffe, N. S. and Horwitz, J. (1992) “Lens and Cataract” in Podos, S. M. and Yanoff, M.(ed.), New York, Gower Medical Publishing.
Kador, P. F., Akagi, Y. and Kinoshita, J. H. (1986) The effect of aldose reductase and its inhibition in sugar cataract formation. Metabolism Metabolism 35(suppl. 1), 15-19.
Kinoshita, J. H. (1974) Mechanisms initiating cataract formation. Invest. Ophthalmol. 13, 713-724.
Maisel, H. (ed.), “The Ocular Lens”, 1985, New York, Marcel Dekker.
Ringvold, A. (1996) The significance of ascorbate in the aqueous humour protection against UV-A and UV-B. Exp Eye Res. 62, 261-264.
Shinohara, T., Piatigorsky, J., Carper, D. A. and Kinoshita, J. H. (1982). Crystallin synthesis and crystallin mRNAs in galactosemic rat lenses. Exp. Eye Res. 34, 39-48.
Siezen, R. J., Fisch, M. R. Slingsby, C. and Benedek, G. B. (1985) Opacification of -crystallins from calf lens in relation to cold cataract formation. Proc. Natl. Acad. Sci. USA 82, 1701-1705.
Sun, T.-X. and Liang, J. J.-N. (1998) Intermolecular exchange and stabilization of recombinant human A- and B-crystallin. J. Biol. Chem. 273, 286-290.
Sun, T.-X., Das, B. K. and Liang, J. J.-N. (1997) Conformational and functional differences between recombinant human lens A- and B-crystallin. J. Biol. Chem. 272, 6220-6225.
White, H. E., Driessen, H. P. C., Slingsby, C. Moss, D. S. and Lindley, P. F. (1989) Packing interactions in the eye lens-structural analysis, internal symmetry and lattice interactions of bovine IVa-crystallin. J. Mol. Biol. 207, 217-235.
Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P. and Blundell, T. (1983) X-ray analysis of eye lens protein -II crystallin at 1.9 A resolution. J. Mol. Biol. 170, 175-202.
Wood, A. M. and Truscoot, R. J. W. (1993) UV filter in human lenses: tryptophan catabolism. Exp. Eye Res. 56, 317-325.
Zigman, S. and Lerman S. (1964) A cold precipitable protein in the lens. Nature, 203, 662-663.
Abraham, E. C., Perry, R. E., Abraham, A. and Swamy, M. S. (1991) Proteins of urea-soluble high molecular weight aggregates from diabetic cataract: identification of in vivo glycation sites. Exp Eye Res. 52, 107-112.
Augusteyn, R. C., Koretz, J. F. and Schurtenberger, P. (1989) The effect of phosphorylation on the structure of -crystallin. Biochim. Biophys. Acta 999, 293-299.
Azuma, M., Shearer, T. R., Matsumoto, T., David, L. L. and Murachi, T. (1990) Calpain II in two in vivo models of sugar cataract. Exp. Eye Res. 51, 393-401.
Azuma, M. Fukiage, C., David, L. L. and Shearer, T. R. (1997) Activation of calpain in lens: a review and proposed mechanism. Exp. Eye Res. 64, 529-538.
Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L. and Slingsby, C. (1990) X-ray analysis of B2-crystallin and evolution of oligomeric lens proteins. Nature, 347, 776-780.
Cai, H., Singh, U. and Wagner, B. J. (1995) 26S proteinase subunit MSS1:cDNA cloning and mRNA expression in quiescent and differentiating rat epithelial exlants. Invest. Ophthalmol. Vis. Sci. 36, S177.
Carcia-Castineiras, S., Dillon, J. and Spector, A. (1978) Detection of bityrosine in cataractous human lens protein. Science 199, 897-899.
Carlsson, S. R. (1993) Isolation and characterization of glycoproteins. In Glycobiology─A practical approach.(Ed. Fukuda, M. and Kobata, A.) Pp. 14-16. IRL Press: New York.
Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. and Spector, A. (1987b) The phosphorylation sites of the B2 chain of bovine -crystallin. Biochem. Biophys. Res. Commun. 144, 1340-1347.
Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. and Spector, A. (1987a) Identification of the specific phophorylated serine in the bovine alpha crystallin A1 chain. Curr. Eye Res. 6, 539-542.
Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. and Spector, A. (1988) Definition and comparison of the phosphorylation sites of the A and B chains of bovine a-crystallin. Exp. Eye Res. 46, 199-208.
Datiles, M., Fukui, H., Kuwabara, T. and Kinoshita, J. (1982) Galactosecataract prevention with sorbinil, an aldose reductase inhibitor. A light microscopic study. Invest. Ophthalmol. Vis Sci. 22, 174-179.
De Jong, W. W., van Kleef, F. S. M. and Bloemendal, H. (1974) Intracellular carbox-terminal degradation of the aA chain of -crystallin. Eur. J. Biochem. 48, 271-276.
De Maio, A. (1994) Protein blotting and immunoblotting using nitrocellulose membranes. In Protein blotting─A practical approach. (Ed. Dunbar, B. S.) Pp. 27-28. IRL Press: New York.
Den Dunnen, J. T., Moormann, R. J. M. and Schoenmakers, J. G. G. (1985) Rat lens -crystallins are internally duplicated and homologous to -crystallins. Biochim. Biophys. Acta 824, 295-303.
Den Dunnen, J. T., Moormann, R. J. M., Lubsen, N. H. and Schoenmakers, J. G. G. (1986a) Concerted and divergent evolution within the rat -crystallin gene family. J. Mol. Biol. 189, 37-46.
Den Dunnen, J. T., Moormann, R. J. M., Lubsen, N. H. and Schoenmakers, J. G. G. (1986b) Intron insertions and deletions in the /-crystallin gene family: the rat B1 gene. Proc. Natl. Acad. Sci. USA 83, 2855-2859.
Dillon, J., Spector, A. and Nakanishi, K. (1976) Identification of  carbolines isolated from fluorescent human lens proteins. Nature 259, 422-423.
Garner, M. H. and Spector, A. (1980) Selective oxidation of cysteine and methione in normal and seile cataractous lenses. Proc. Natl. Acad. Sci. USA 77, 1274-1277.
Groenen, P. J. T. A., Merck, K. B., de Jong, W. W. and Bloemendal, H. (1994) Structure and modifications of the junior chaperone -crystallin. Eur. J. Biochem. 225, 1-19.
Harding, J. J. and Dillen, K. J. (1976) Structural protein of the mammalian lens: a review with emphasis on the change in development, aging and cataract. Exp. Eye Res. 22, 1-73.
Jacobson, G. (1994) Protein blotting using semi-dry electrophoretic transfer equipment. In Protein blotting─A practical approach. (Ed. Dunbar, B. S.) Pp. 53-62. IRL Press: New York..
Jahngen, J. H., Haas, A. L., Ciechanover, A., Blondin, J., Eisenhauser, D. and Taylor, A. (1986) The eye lens has an active ubiquitin-protein cinjugation system. J. Biol. Chem. 261, 13760-13767.
Jahngen-Hodge, J., Cyr, D., Laxman, E. and Taylor, A. (1992) Ubiquitin and ubiquitin conjugates in human lens. Exp. Eye Res. 55, 897-902.
Jahngen-Hodge, J., Taylor, A., Shang, F., Huang, L. L. and Mura, C. (1994) Oxidative stress to lens crystallins. Meth. Enzym. 233, 512-522.
Kador, P. F., Zigler, J S. and Kinoshita, J. H. (1979) Alterations of lens protein synthesis in galactosemic rats. Invest. Ophthalmol. Vis. Sci. 18, 696-702.
Kasuya, M., Itoi, M., Kobayashi, S., Sunaga, H and Suzuki, K. T. (1992) Changes of glutathione and taurine concentration in lenses of rat eyes induced by galactose-cataract formation or ageing. Exp. Eye Res. 54, 49-53.
Kroone, R. C., Elliott, G. S., Ferszt, A., Slingsby, C., Lubsen, N. H. and Schoenmakers, J. G. G.(1994) The role of the sequence extensions in -crystallin assembly. Protein Engng. 7, 1395-1399.
Mansfield, M. A. (1994) Protein blotting using polyvinylidene fluoride membranes. In Protein blotting─A practical approach. (Ed. Dunbar, B. S.) Pp. 41-49. IRL Press: New York..
Mayr, E.-M., Jaenicke, R. and Glockshuber, R. (1994) Domain interactions and connecting peptides in lens crystallins. J. Mol. Biol. 235, 84-88.
Monnier, V. M. and Cerami, A. (1983) Nonenzymatic glycosylation and browning of proteins in vivo. In The Mailard Reaction in Food and Nutrition (Ed. Waller, G. R. and Feather, M. S.) Pp.431-449. ACS symposium series, American Chemical Society Printing.
Perry, R. E., Swamy, M. S. and Abraham, E. C. (1987) Progressive changes in lens crystallin glycation and high molecular weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Exp Eye Res. 44, 269-282.
Podos, S. M. and Yanoff, M.(ed.), “Lens and Cataract”, 1992, New York, Gower Medical Publishing.
Robinson, A. B. and Robinson, L. R. (1991) Distribution of glutamine and Asn residues and their near neighbors in peptides and proteins. Proc. Natl. Acad. Sci. USA 88, 8880-8884.
Roskin, P. and Rosenstock, J. (1987) Aldose reductase inhibitors and diabetic complications. Amer. J. Med. 83, 298-306.
Saxena, P., Saxena, A. K. and Monnier, V. M. (1996) High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in culture rat lens. Exp. Eye Res. 63, 535-545.
Shang, F., Gong, X., Palmer, H. J., Nowell, Jr. T. R. and Taylor, A. (1997) Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp. Eye Res. 64, 21-30.
Shearer, T. R., David, L. L. and Anderson, R. S. (1987) Selenite cataract: a review. Curr. Eye Res. 6, 289-300.
Shearer, T. R., Shih, M., Mizuno, T. and David, L. L. (1996) Crystallins from rat lens are especially susceptible to calpain-induced light scattering compared to other species. Curr. Eye Res. 15, 860-868.
Shinohara, T., Piatigorsky, J., Carper, D. A. and Kinoshita, J. H. (1982). Crystallin synthesis and crystallin mRNAs in galactosemic rat lenses. Exp. Eye Res. 34, 39-48.
Sedlay, J. and Lindsay, R. H. (1968) Estimation of total, protein-bound and nonprotein sulfhydryl group in tissue with Ellman’s reagent. Anal. Biochem. 25, 192-205.
Siezen, R. J. and Hoenders, H. J. (1979) The quaternary structue of bovine a-crystallin. Eur. J. Biochem. 96, 431-440.
Singh, U. and Wagner, B. J. (1995) Cloning and expression in the chick embryo lens of S4, a subunit of the 26S proteinase ATPase complex. Invest. Ophthalmol. Vis. Sci. 36, S882.
Spector, A. (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J. 9, 1173-1182.
Srivastava, O. P., Srivastava, K. and Silney, C. (1994) Identification of origin of two polypeptides of 4 and 5 kDa isolated from human lens. Invest. Ophthalmol. 35, 207-214.
Takemoto, L. (1996) Increase in the intramolecular disufide bonding of alpha-A crystallin during aging of the human lens. Exp. Eye Res. 63, 585-590.
Takemoto, L. and Azari, P. (1976) Amino acid composition of normal and cataractous human lens proteins. Exp. Eye Res. 23, 1-7.
Unakar, N. J., Tsui, J. Y. and Johnson, M. J. (1989) Prefeeding of aldose reductase inhibitor and galactose cataractogenesis. Curr. Eye Res. 8, 997-1010.
Van Boekel, M. A. M. and Hoenders, H. J. (1992a) In vivo glycation of bovine lens crystallins. Biochim. Biophys. Acta 1159, 99-102.
Van Boekel, M. A. M. and Hoenders, H. J. (1992b) Glycation in crystallins in lenses from aging and diabetic individuals. FEBS Lett. 314, 1-4.
Van Kleef, F. S. M., Nijzink-Maas, M. J. C. M. and Hoenders, H. J. (1974) Intracellular degradation of -crystallin. Eur. J. Biochem. 48, 563-570.
Voorter, C. E. M., Mulders, J. W. M., Bloemendal, H. and De Jong, W. W. (1986) Some aspects of the phosphorylation of -crystallin A. Eur. J. Biochem. 160, 203-210.
Wistow, G., Slingsby, C., Blundell, T., Driessen, H., de Jong, W. W. and Bloemendal, H. (1981) Eye-lens proteins: the three-dimentional structure of -crystallin predicted from monomeric -crystallin. FEBS Lett. 133, 9-16.
Augusteyn, R. C. and Koretz, J. F. (1987) A possible structure for -crystallin. FEBS Lett. 222, 1-5.
Bhat, S. P. and Nagineni, C. N. (1989) B subunit of lens-specific protein -crystallin is present in other ocular and non-ocular tissues. Biochem. Biophys. Res. Commun. 158, 319-325.
Borkman, R. F., Knight, G. and Obi, B. (1996) The molecular chaperone -crystallin inhibits UV-induced protein aggregation. Exp. Eye Res. 62, 141-148.
Carver, J. A., Aquilina, J. A. and Truscott, R. J. W. (1994) A possible chaperone-like quaternary structure for -crystallin. Exp. Eye Res. 59, 231-234.
Cherian, M. and Abraham, E. C. (1995) Diabetes affects -crystallin chaperone function. Biochem. Biophys. Res. Commun. 212, 184-189.
Chiesi, M., Longoni, S. and Limbruno, U. (1990) Cardiac alpha-crystallin III. Involvement during heart ischemia. Mol. Cell. Biochem. 97, 129-136.
Das, K. P. and Surewicz, W. K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of -crystallin. FEBS Lett. 369, 321-325.
De Jong, W. W., Leunissen, J. A. M. and Voorter, C. E. M. (1993) Evolution of the -crystallin/small heat-shock protein family. Mol. Biol. Evol. 10, 103-126.
Derham, B. K. and Harding, J. J. (1997) Effect of aging on the chaperone-like function of human -crystallin assessed by three methods. Biochem. J. 328, 763-768.
Greenfield, N. J. (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235, 1-10.
Groenen, P. J. T. A., Merck, K. B., de Jong, W. W. and Bloemendal, H. (1994) Structure and modifications of the junior chaperone -crystallin. Eur. J. Biochem. 225, 1-19.
Groth-Vasselli, B., Kumosinski, T. F. and Farnsworth, P. N. (1995) Computer-generated model of the quaternary structure of alpha crystallin in the lens. Exp. Eye Res. 61, 249-253.
Horwitz, J. (1992) -Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449-10453.
Horwitz, J. (1993) The function of alpha-crystallin. Invest. Ophthalmol. Vis. Sci. 34, 10-22.
Horwitz, J., Emmons, T. and Takemoto, L. (1992) The ability of lens alpha crystallin to protect against heat-induced aggregation is age-depedent. Curr. Eye Res. 11, 817-822.
Horwitz, J., Huang, Q.-L., Ding, L.-L. and Bova, M. P. (1998) Lens -crystallin: chaperone-like properties. Method Enzymol. 290, 365-383.
Ingolia, T. D. and Craig, E. A. (1982) Four small heat-shock proteins are related to each other and to mammalian -crystallin. Proc. Natl. Acad. Sci. USA 79, 2360-2364.
Iwaki, T., Kume-Iwaki, A., Liem, R. K. H. and Goldman, J. S. (1989) B-crystallin is expressed in non-lenticular tissues and accumulated in Alexander’s disease brain. Cell 57, 71-78.
Kato, K., Shinohara, H., Kurobe, N., Goto, S., Inaguma, Y. and Ohshima, K. (1991) Immunoreactive A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. Biochim. Biophys. Acta 1080, 173-190.
Klotz, J. H. and Hunston, D. L. (1971) Properties of graphical representations of multiple classes of binding sites. Biochemistry 10, 3065-3069.
Lee, J.-S., Samejima, T., Liao, J.-H., Wu, S.-H. and Chiou, S.-H. (1998) Physilogical role of the association complexes of -crystallin and its substrates on the chaperone activity. Biochem. Biophys. Res. Commun. 244, 379-383.
Liang, J. N. and Chakrabarti, B. (1982) Spectroscopic investigations of bovine lens crystallin. 1. Circular dichroism and intrinsic fluorescence. Biochemistry 21, 1847-1852.
Liang, J. N. and Li, X.-Y. (1991) Interaction and aggregation of lens crystallins. Exp. Eye Res. 53, 61-66.
Rao, S. C. and Rao, C. M. (1994) Red edge excitation shifts of crystallins and intact lenses. A study of segmental mobility and inter-protein interactions. FEBS Lett. 337, 269-273.
Siezen, R. J. and Argos, P. (1983) Structural homology of lens crystallin III. Secondary structure estimation from circular dichroism and prediction from amino acid sequence. Biochim. Biophys. Acta 748, 56-67.
Siezen, R. J. and Bindels, J. G. (1982) Stepwise dissociation/denaturation and reassociation/renaturation of bovine -crystallin in urea and guanidine hydrochloride: sedimentation, fluorescence, near-ultraviolet and far-ultraviolet circular dichroism studies. Exp. Eye Res. 34, 969-983.
Sreerama, N. and Woody, R. W. (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32-44.
Sreerama, N. and Woody, R. W. (1994) Protein secondary structure from circular dichroism spectroscopy. J. Mol. Biol. 242, 497-507.
Srinivasan, A. N., Nagineni, C. N. and Bhat, S. P. (1992) A-crystallin is expressed in non-lenticular tissues. J. Biol. Chem. 267, 23337-23341.
Tardieu, A., Laporte, D., Licinio, P., Krop, B. and Delaye, M. (1986) Calf lens -crystallin quaternary structure. A three-layer tetrahedral model. J. Mol. Biol. 192, 711-724.
Van Noort, J. M., van Sechel, A. C., Bajramovic, J. J., Ouagmiri, M. E., Polman, C. H., Lassmann, H. and Ravid, R. (1995) The small heat-shock protein B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798-801.
Walsh, M. T., Sen, A. C. and Chakrabarti, B. (1991) Micellar subunit assembly in a three-layer model of oligomeric -crystallin. J. Biol. Chem. 266, 20079-20084.
Wang, K. and Spector, A. (1995) -Crystallin can act as a chaperone under conditions of oxidative stress. Invest. Ophthalmol. Vis. Sci. 36, 311-321.
Wistow, G. (1993) Possible tetramer-based quaternary structures for -crystallins and small heat shock proteins. Exp. Eye Res. 56, 729-732.
Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922.
Askren, C. C., Yu, N.-T. and Kuck Jr., J. F. R. (1979) Variation of concentration of sulfhydryl along visual axis of aging lenses by laser Raman optical dissection technique. Exp. Eye Res. 29, 647-654.
Barron, B. C., Yu, N.-T. and Kuck Jr. J. F. R. (1988) Raman spectroscopic evaluation of aging and lonf-wave UV exposure in the Guinea pig lens: a possible model for human aging. Exp. Eye Res. 46, 249-258.
Bulkin, B. J. (1991) The Raman effect: an introduction. In Analytical Raman Spectroscopy (Ed. Grasselli, J. G. and Bulkin, B. J.). John Wiley & Sons, New York. Pp. 1-18.
Cai, M.-Z., Kuck, Jr. J. F. R. and Yu, N.-T. (1989) Galactose-induced cataract in rat: Raman detection of sufhydryl decrease and water increase along an equatorial diameter. Exp. Eye Res. 49, 531-541.
Chase, B. (1987) Fourier transform Raman spectroscopy. Anal. Chem. 59, 881A-889A.
Chase, B. (1994) A new generation of Raman instrumentation. Appl. Spectrosc. 48, 14A-19A.
Chase, D. B. (1991) Modern Raman instrumentation and techniques. In Analytical Raman Spectroscopy (Ed. Grasselli, J. G. and Bulkin, B. J.). John Wiley & Sons, New York. Pp. 21-42.
Chase, D. B. (1986) Fourier transform Raman spectroscopy. J. Am. Chem. Soc. 108, 7485-7488.
Cutler, D. J. (1990) The development of Fourier transform Raman spectroscopy. Spectrochim. Acta 46A, 123-129.
Cutler, D. J. (1990) The development of Fourier transform Raman spectroscopy. Spectrochim. Acta 46A, 131-151.
Dai, S., Qi, S., Zhang, L., Bai, C., Ni, T. and Deng, X. (1995) Laser Raman spectrometry study on experimental galactose-induced cataract. Yen Ko Hsueh Pao 11, 143-146.
Diem, M. (1993) Introduction to Raman spectroscopy. In Introduction to modern vibrational spectroscopy. John Wiley & Sons, New York. Pp. 109-174.
East, E. J., Chang, R. C. C., Yu, N.-T. and Kuck, Jr, J. F. R. (1978) Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. J. Biol. Chem. 253, 1436-1441.
Huong, P. V. (1991) Raman spectroscopy for biological applications. In Analytical Raman Spectroscopy (Ed. Grasselli, J. G. and Bulkin, B. J.). John Wiley & Sons, New York. Pp. 397-421.
Itoh, K., Ozaki, Y., Mizuno, A. and Iriyama, K. (1983) Structural changes in lens proteins of hereditary cataracts monitored by Raman spectroscopy. Biochemistry 22, 1773-1778.
Kasuya, M., Itoi, M., Kobayashi, K., Sunaga, H. and Suzuki, K. T. (1992) Changes of glutathione and taurine concentrations in lenses of rat eyes induced by galactose-cataract formation or aging. Exp. Eye Res. 54, 49-53.
Kuck, J. F. R., Yu, N.-T. and Askren, C. C. (1982) Total sulfhydryl by Raman spectroscopy in the intact lens of several species: variations in the nucleus and along optical axis during aging. Exp. Eye Res. 34, 23-37.
Mizuno, A., Ozaki, Y., Itoh, K., Matsushima, S. and Iriyama, K. (1984) Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract. Biochem. Biophys. Res. Commun. 119, 989-994.
Ozaki, Y., Mizuno, A., Itoh, K. Matsushima, A. and Iriyama, K. (1987a) Raman spectroscopic study of cataract formation: Emory mouse cataract. Appl. Spectrosc. 41, 597-605.
Ozaki, Y., Mizuno, A., Itoh, K. and Iriyama, K. (1987b) Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. J. Biol. Chem. 262, 15445-15551.
Ozaki, Y., Mizuno, A., Itoh, K., Yoshiura, M., Iwamoto, T. and Iriyama, K. (1983) Raman spectroscopic study of age-relared structural changes in the lens proteins of an intact mouse lens. Biochemistry 22, 6254-6259.
Ozaki, Y.. Mizuno, A., Kamada, Y., Itoh, K. and Iriyama, K. (1982) Laser Raman spectroscopic study of a diabetic cataractous lens. Chem. Lett. 887-890.
Siamwiza, M. N., Lord, R. C., Chen, M. C., Takamatsu, T., Harada, I., Matsuura, H. and Shimanouchi, T. (1975) Interpretation of doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14, 4870-4876.
Yu, N.-T. and East, E. J. (1975) Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions. J. Biol. Chem. 250, 2196-2202.
Yu, N.-T., Denagel, D. C., Pruett, P. L. and Kuck Jr., J. F. R. (1985) Disulfide bond formation in the eye lens. Proc. Natl. Acad. Sci. USA 82, 7965-7968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔