(3.235.108.188) 您好!臺灣時間:2021/02/27 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉秀玲
研究生(外文):Shou-Lin Liu
論文名稱:根據葉綠體DNA與核DNA的變異建立水鴨腳複合種群的親緣起源
論文名稱(外文):Origins of Begonia formosana complex inffered from chloroplast DNA and nuclear DNA variation
指導教授:蔣鎮宇蔣鎮宇引用關係彭鏡毅彭鏡毅引用關係
指導教授(外文):Tzen-Yuh ChiangChing-I Peng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:112
中文關鍵詞:水鴨腳葉綠體DNA核DNA雜交事件多倍體化
外文關鍵詞:Begonia formosanachloroplast DNAnuclear DNAhybridizationpolyploidization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
水鴨腳(Begonia formosana)屬於秋海棠科(Begoniacea)秋海棠屬(Begonia)植物,分布於台灣及琉球群島。葉部形態則具多型性,由掌狀深裂到狹長卵狀全緣,幾乎涵蓋所有秋海棠植物葉形。
水鴨腳為台產秋海棠屬植物中染色體數目最多者,由已知的染色體數n=30,推測其物種種化在演化歷史時間中屬於較近期事件,可由染色體n=11與n=19之二物種雜交配對後,產生多倍體化(polyploidization)現象而產生;或為n=15之物種在減數分裂時發生錯誤(meiotic error)導致的多倍體化,然而,台灣產秋海棠中只有武威秋海棠染色體為2n=30,且已知其為裂葉秋海棠與台灣秋海棠之天然雜交種,其花粉不具稔性,因此此一假說應予排除。而較可信賴的第一假說建議,水鴨腳的起源可經由染色體數n=11之裂葉秋海棠(B. palmata)或圓果秋海棠(B. aptera)、其他近緣種,與n=19的台灣秋海棠(B. taiwaniana)或其他近緣種,藉種間雜交及多倍體化(polyploidization)的過程形成。
本研究中利用分子遺傳技術,序列母系遺傳葉綠體DNA(cpDNA) trnD-trnT spacer region及經基因重組細胞核nrDNA的ITS region,藉由親緣系統的分析,與其他可能為父母種之物種作比對,以重建水鴨腳的演化歷史。
結果顯示台灣產秋海棠屬植物葉綠體DNA的變異很低,根據重建的母系親緣系統樹狀圖,支持水鴨腳之葉綠體DNA具多次起源,並顯示其可能之母系來源是裂葉秋海棠(n=11)或台灣秋海棠(n=19)。而由重建親本來源之細胞核DNA樹狀圖支持可能是由溪頭秋海棠(B. chitoensis)(n=19)或圓果秋海棠(n=11)擔任水鴨腳之父系來源。細胞核DNA具相當高的變異度,並顯示台灣產秋海棠物種間具頻繁的天然雜交事件及漸滲雜交事件,由此推論亦與台灣產秋海棠屬物種外部形態具多型性相吻合。配合染色體數目、極高的細胞核DNA與外表型的變異,再加上極慢的葉綠體DNA之演化速率,皆支持水鴨腳是一雜交起源物種。
Abstract
Begonia formosana (Begoniaceae) is distributed in the Ryukyus and Taiwan. Polymorphism in morphological traits, such as leaf and decoration of leaf surface in B. formosana has documented. Begonia formosana has the highest chromosome number (n=30) among the Taiwanese Begonia. Its evolution may have involved in hybridization and polyploidization events. Based on the known chromosome number in Taiwan''s Begonia, species with chromosome number n=11 and n=19 may be the most possible parental species. Inter-specific hybridization followed by polyploidization may have yielded B. formosana. Alternatively, B. formosana can be an autotetraploid of a diploid of with n=15. However, within Taiwan''s species, B. buimontana, the only taxon with such chromosome counts, has been known as a natural hybrid between B. palmata and B. taiwaniana and is pollen-sterile, which has falsified the autotetraploid hypothesis.
Low variation in nucleotide sequences of a noncoding spacer between trnD and trnT genes of the chloroplast DNA has been detected between Begonia species. Reconstructed phylogeny indicated multiple origins of B. formosana, which suggested allopolyploid has been involved. In contrast , the rate of evolution of nrDNA ITS sequences was found remarkably high, which is consistent with the morphological variation. High nuclear DNA and morphological variation, together with the low chloroplast DNA variation and its polyphyly, suggested a hybrid nature in B. formosana. The possible maternal species in the formation of B. formosana is B. palmata (n=11) or B. taiwaniana (n=19), and the most possible paternal species is B. chitoensis (n=19) and B. aptera (n=11).
目次
謝辭Ⅰ
中文摘要Ⅱ
英文摘要Ⅳ
目次Ⅴ
表目次Ⅶ
圖目次Ⅷ
壹、前言1
一、水鴨腳的研究歷史回顧1
二、種的界定6
三、分子技術在系統分類學的應用8
四、研究目的11
貳、研究材料及方法12
一、研究材料12
二、研究方法14
參、結果23
一、DNA分子序列的遺傳變異23
一)葉綠體DNA trnD-trnT spacer region 片段23
二)細胞核nrDNA ITS 片段24
二、親緣樹狀圖的構築26
一)葉綠體DNA 親緣樹狀圖之構築26
二)細胞核DNA親緣樹狀圖之構築27
三、外部形態的一致性30
四、地理分化31
肆、討論32
一、水鴨腳之親緣起源32
二、秋海棠種間之親緣關係36
三、關於秋海棠植物中其他演化上的問題39
一)雜交物種與未確定物種的演化事件39
二)複雜的種化事件40
三)台灣產秋海棠屬植物的演化42
伍、結論43
陸、參考文獻44
表53-80
圖81-112
陸、參考文獻
林渭訪,章樂民,柳晉。1968。台灣之森林植物。中華林學季刊1(2): 1-78.
Alice, L. A., and Campbell, C. S., 1999. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences . Amer. J. Bot. 86(1): 81-97.
Allan, G. J., Clark, C., and Rieseberg, L. H., 1997. Distribution of parental DNA markers in Encelia virginensis (Asteraceae: Heliantheae), a diploid species of putative hybrid origin. Pl. Syst. Evol. 205: 205-221.
Arnold, M. L., 1993. Iris nelsonii (Iridaceae): origin and genetic composition of a homoploid hybrid species. Amer. J. Bot. 80(5): 577-583.
Arnold, M. L., Bennett, B. D., and Zimmer, E. A., 1990. Natural hybridization between Iris fulva and Iris hexagona: pattern of ribosomal DNA variation. Evolution. 44(6): 1512-1521.
Arnold, M. L., Buckner, C. M., and Robinson J. J., 1991. Pollen-mediated introgression and hybrid speciation in Louisiana irises. Proc. Nat. Acad. Sci. USA. 88: 1398-1402.
Arnold, M. L., Robinson, J. J., Buckner, C. M., and Bennet, B. D., 1992. Pollen dispersal and interspecific gene flow in Louisiana irises. Heredity. 68: 399-404.
Baldwin, B. G., 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mole. Phyl. Evol. 1: 3-16.
Brochmann, C., Xiang, Q. Y., Brunsfeld, S. J., Soltis, D. E., and Soltis, P. A., 1998. Molecular evidence for polyploid origins in Saxifraga (Saxifragaceae) the narrow arctic endemic S. svallbardensis and its widespread allies. Amer. J. Bot. 85(l). 135-143.
Byrne, M., Moran, G. f., 1994. Population divergence in chloroplast genome of Eucalyptus nitens. Heredity. 73: 18-28.
Caputo, P., Aceto, S., Cozzolino S., and Nazzaro R., 1997. Morphological and molecular characterization of a nature hybrid between Orchis laxiflora and O. morio (Orchidaceae). 205:147-155.
Chen, C. S., 1993. Begoniaceae. Pp. 845-854. in Flora of Taiwan, second edition.
Chen, Y K., 1988. A systemic study of Begonia L. (Begoniaceae) of Taiwan. Master Thesis, Graduate School of International Development of chain, Section of Agriculture Chinese culture university, Chinese culture university.
Cracraft, J., 1987. Species concepts and the ontology of evolution. Biol. Philos. 2: 63-80.
Cronn, R. C., Zhao, X., Paterson, A. H., and Wendel J. F., 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA diploid and allpolyploid cottons.
Cruzan, M. B., Arnold, M. L., Carney, S. E., and Wollenberg, K. R.,1993. CpDNA inheritance in interspecific crosses and its effect on evolutionary inference in Louisiana irises. Am. J. Bot. 80. 344.
Darwin, C. R., 1859. On the origin of species. John Murray, London.
Depamphilis, C. W., Wyatt, R., 1989. Hybridization and introgression in Buckeyes (Aesculus: Hippocastanceae): a review of the evidence and a hypothesis to explain long-distance gene flow. Syst. Bot. 14(4): 593-611
Dvorak, J., and Zhang, H.B., 1992. Application of molecular tools for study of the phylogeny of diploid and polyploid taxa in Triticeae. Heredity. 166: 37-42.
Doorenbos, M. S., Sosef, M., and Wilde, J. J., 1998. The sections of Begonia.
Doyle, J. J., Doyle, J. L., Brown, A. H. D., and Grace J. P., 1990. Multiple origins of polyploids in the Glycune tabacina complex inferred from chloroplast DNA polymorphism. Proc. Natl. Acad. Sci. USA. 87:714-717.
Eckennewalder, J. E., 1984. Natural intersectional hybridization between North American Species of populus (Salicaceae) in sections Aigeiros and Tacamahaca. III Paleobotany and evolution. Can. J. Bot. 62: 336-342.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39(4): 783-791.
Ehrlich, P. R., and Raven, P. H., 1969. Differentiation of populations. Science. 165:1228-1232.
Ferris, C., King, R. A., and Gray, A. J., 1997. Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. hubbard. Mol. Eco. 6:185-187
Forbes, F. B., and Hemsley,W. B., 1889. Enumeration of all the plants known from China Proper, Formosa, Hinan, the Corea, the Luchu Archipelago, and the island Hongkong. J. Linn. Soc. Bot. 23: 321-323.
Franicisco-Ortega. J., Jansen R. K., and Santos-Guerra. A., 1996. Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. Proc. Natl. Asad. Sci.USA. 93: 4085-4090.
Grant, V., 1981. Plant speciation, Znd ed. Columbia University press. New York.
Grant, V., 1957. The plant species in theory and praction. Pp. 39-80 in E. Mayr (ed.), the species problem. American Association for the Advancement of Science, Publication No. 50, Washington, D. C. of populations.
Ham, R. C. H. J., and Hart, H., 1998. Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. Amer. J. Bot. 85(l): 123-134.
Hayata, B., 1911. Materials for a flora of Formosa. J. COll. Sci. Imp.Univ Tokyo. 30(1): 122-126.
Hennig, W., 1966. Phylogenetic systematics. University of Illinois Press, Urbana.
Henry, A., 1896. A list of plants from formosa with some preliminary remarks on the flora and economic botany of the island. Asiat.
Higgins, D. G., Bleasby, A. J., and Fuchs, R., 1992. CLUSTAL V : Improved software for multiple sequence alignment. CABIOS. 8: 189-191.
Hillis, D. M., and Bull, J. J., 1993. An empirical test of bootstrapping as a method for assessing confidence on phylogenetic analysis. Syst. Biol. 42:182-192.
Hillis, D. M., Moritz, C., and Mable, B. K., 1996. Molecular systematics. 2nd Edn. Sinauer, Sunderland.
Hillis, D. M., Huelsenbeck, J. P., and Cunningham C. W., 1994. Application and accuracy of molecular phylogenies. Science. 264: 671-677.
Holman, E. W., 1987. Recobnizability of sexual and asexual species of rotifer. Syst. zool. 36:381-386.
Hughes, M. A., 1996. Plant Molecular Genetics. 22-44.
Kaneshiro, K., and Val, F. C., 1977. Natural hybridization between a sympatric pair of Hawaiian DroSophila. Am. Natu. 111: 897-902.
Kimura, M., 1980. A simple model for estimating evolutionary rate of base substitution through comparative studies of nucleotides sequence. J. Mol. Evol. 16: 111-120.
Koch, M., Mummenhoff, K., and Hurka, H., 1998. Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. Can. J. Bot. 76:382-396.
Kornkven, A. B., Watson, L. E., and Estes, J. R., 1998. Phylogenetic analysis of Artemisia section Tridentatae (Asteraceae) based on sequences From the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Amer. J. Bot. 85(12):1787-1795.
Kumar, S., Tamura, K., Nei, M., 1993. MEGA: Molecular Evolution Genetics Analysis Version 1.02 Institute of Molecular Evolution Genetics. The Pennsylvania Sate University. U. S. A.
Lai, M. J., Leou, C. S. and N. J. Chung., 1992. Begonia nantoensis, a new species from Taiwan. Quart. J. Expr. Forest. NTU. 6: 59-63.
Legro, A. H., and Doorenbos, J., 1969. Chromosome numbers in Begonia. Netherlands J. Agric. Sci. 1:189-202.
Legro, A. H., and Doorenbos, J., 1970. Chromosome numbers in Begonia. Begonina. 37: 203-234.
Legro, A. H., and Doorenbos, J., 1971 . Chromosome numbers in Begonia. Netherlands J. Agric . Sci. 19: 176-183.
Legro, A. H., and Doorenbos, J., 1973. Chromosome numbers in Begonia. Netherlands J. Agric . Sci. 21: 167-170.
Lewis, W H., 1980. Polyploid in species populations, ed. WH Lewis, Pp. 103-44. New York: Plenum.
Liu, T. S., and M. J. Lai., 1977. Begoniaceae. Pp. 791-798. In H. L. Li, et al. (ed.), Flora of Taiwan, Vol. 3, Epoch, Taipei.
Masterson, J., 1994. Stomatal size in fossil plant: evidence for poplyploid in majority of angiosperms. Science. 264: 421-424.
Mayr, E., 1963. Animal species and evolution. Belknap Press, Cambridge, MA.
Mcdade, L. A., and Moody, M. L., 1999. Phylogenetic relationships among Acanthaceae: evidenc+e from noncoding trnL-trnF chloroplast DNA sequences. Amer. J. Bot. 86(1): 70-80.
Morgan, D. R., 1997. Reticulate evolution in Machaeranthera (Asteraceae). Syst. Bot. 22(4): 599-615.
Mummenhoff, K., and Hurka, H., 1995. Allopolyploid origin of Arabidopsis suecica (Fries) norrlin: evidence from chloroplast and nuclear genome markers. Bot. Acta. 108:449-456.
Parker, L. T., and Koopowitz, H. 1993. Chloroplast DNA and determination of species status in the Disa tripetalides complex (Orchidaceae), and its relationships to three species Racemosae, section Disa. Biochem. Syot. Ecol. 2I: 799-808.
Paterson, H. E. H.,1988. The recoginition concept of species. Pp. 21-29 in E. S. Vrba (ed.), Species and Speciation. Transvaal Museum Monograph MO. 4, Pretoria.
Peng, C. I., and Chen, Y. K., 1991. Hybridity and parentage of Begonia buimontant Yamamoto (Begoniaceae) from Taiwan. Ann. Missouri Bot. Gard. 78: 995-1001.
Peng, C. I., 1998. Begonia taipeiensis Peng, a natural hybrid between B. formosana and B. aptera. Bot. Bull. Aced. Sinica (in press).
Peng, C. I., and Chiang, T. Y., 1998. Hybridity and parenatge of Begonia taipeiensis Peng (Begoniaceae) from Taiwan. Amer. J. Botl. Suppl. 85: 174.
Peng, C. I., and Chiang, T. Y., 1999. Hybridity and parentage of Begonia x taipeiensis Peng (Begoniaceae) from Taiwan. Ann. Missouri Bot. Gard. (in press)
Ramsey, J., and Schemske, D. W., 1998. Pathways, Mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467-501.
Richard, M., Jubier, M. F., Bajon, R., Gouyon, P. H., and Lejeune, B., 1995. A new hypothesis for the origin of pentaploid Holcus from diploid Holcus lanatus L. and tetraploid Holcus mollis L. in france. Mol. Ecol. 4: 29-38.
Roeland, C. H. J., Ham, and Hart, H''T., 1994. Evolution of Sedum series Rupestria (Crassulaceae): evidence from chloroplast DNA and biosystematic data. Pl. Syst. Evol. 190: 1-20.
Rozas, J., and Rozas, R., 1997. DNA Sequence Polymorphism Version 2.52.
Sang, T., Crawford, D. J., and Stuessy, T. F., 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot. 84(8): 1120-1136.
Satiou, N., and Nei, M., 1987. The neighbor-joining methods: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4: 406-425.
Simpson, G. G., 1953. The Major Features of Evolution. New York: Columbia University Press.
Soltis, P. S., and Solits, D. E., 1991. Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst. Bot. 16(3): 407-413.
Soltis, D. E., and Kuzoff, R. K., 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution. 49(4): 727-742.
Steane, D. A., Scotland, R. W., Mabberley, D. J., and Olmstead, R. G., 1999. Molecular systematics of Clerodendrum (Lamiaceae): ITS sequences and total evidence. Amer. J. Bot. 86(1): 98-107.
Swofford, D. L., 1991. 1991. PAUP: Phylogenetic analysis using parsimony version 3.0S. Computer program distributed by Illinois National History Survey. Champaign. Illinois. U. S. A.
Templeton, A. R., 1974. Density dependent selection in parthenogenetic and self-mating populations. Theor. Pop. Biol. 5: 229-250.
Templeton, A. R., 1996. The meaning of species and speciation: a genetic Perspective Pp. 3-27. In: OtteD., and Endler J. A. Speciation and Its Consequences.
Wageningen, Agricultural University Papers, 98-2. The Nederlands.
Wang X. R., and Szmidt, A., 1994. Hybridization and chloroplast DNA variation in a Pinus species complex from Asia. Evolution. 48(4): l021-l031.
Wendel, J. F., Stewart, J. M., and Rettig, J. H., 1991. Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium. Evolution. 45(3): 694-711.
Wendel, J. F., Schanabel, A., and Seeianan, T., 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Nati. Acad. Sci. USA. 95: 280-284.
Wiley, E. O., 1981. Phylogenetics. John Wiley, New York.
Xiang, Q. Y., Crawford, C. J., Wolfe, A. D., Tang, Y. C., and Depamphilis, C. W., 1998. Origin and biogeography of Aesculus L. (Hippocastanaceae): a molecular phylogenetic perspective . Evolution. 52(4): 988-997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔