(54.236.62.49) 您好!臺灣時間:2021/03/08 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡政達
研究生(外文):Jenq-Dar Tsay
論文名稱:利用FT-IR和13C-NMR光譜探討檸檬酸製程合成鈦酸鋇陶瓷粉末之研究
論文名稱(外文):Using FT-IR and 13C-NMR Spectroscopy to Investigate the Synthesis of Barium Titanate Powder by the Citrate Process
指導教授:方滄澤
指導教授(外文):Tsang-Tse Fang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:266
中文關鍵詞:檸檬酸製程鈦酸鋇陶瓷粉末檸檬酸鋇鈦錯化合物鋇鈦檸檬酸凝膠熱分解行為合成機構霍氏轉換紅外線光譜13碳-核磁共振光譜
外文關鍵詞:Citrate processBarium titanate ceramic powderBarium titanium citrateBarium titanium citric gelThermal decomposition behaviorFormation mechanismFT-IR spectroscopy13C-NMR spectroscopy
相關次數:
  • 被引用被引用:13
  • 點閱點閱:356
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用FT-IR(Fourier transform infrared)和13C-NMR(13C nuclear magnetic resonance)光譜,探討以檸檬酸製程(citrate process)合成鈦酸鋇(barium titanate)陶瓷粉末中,起始鋇鈦檸檬酸溶液的製備參數,以及檸檬酸鋇鈦錯化合物(barium titanium citrate)與鋇鈦檸檬酸凝膠的性質和熱分解行為,以期能了解並建立合成鈦酸鋇陶瓷粉末之適當的檸檬酸製程,最後針對所合成之鈦酸鋇陶瓷粉末的性質予以探討和評估。
在鋇鈦檸檬酸溶液的製備參數方面,首先,藉由單和檸檬酸反應,或藉由先和乙二醇反應而後再溶入檸檬酸的製程順序,可以安定鈦烷氧化物,進而製成澄清之鈦溶液。另外,調整檸檬酸和鋇離子的莫耳比例和溶液的pH值,部份鋇鈦檸檬酸溶液會有三種型態的沈澱物生成,其中Type-I和Type-II兩種不同種類的沈澱物,其可能的化學組成分別為:檸檬酸鋇鈦錯化合物;BaTi(C6H6O7)3+6H2O,和檸檬酸鋇錯化合物;Ba(C6H6O7)+xH2O。
在檸檬酸鋇鈦錯化合物的性質與熱分解行為方面,根據FT-IR和13C-NMR光譜的解析結果,建立檸檬酸鋇鈦錯化合物;BaTi(C6H6O7)+xH2O可能的分子配位結構,而前人文獻所提出檸檬酸鋇鈦錯化合物化學式中的水,應為類似沸石水形式或為物理性吸附的水而非化學性鍵結的結晶水。另外,隨著煆燒溫度的提高,檸檬酸鋇鈦錯化合物中有機酸根螯合鍵結陽離子的型式,會由單螯合(unidentate)-架橋螯合(bridging)-離子(ionic)鍵結型態,最後在500℃煆燒,陽離子會轉為和碳酸根離子鍵結。除此之外,檸檬酸鋇鈦錯化合物中的檸檬酸分子熱分解成附子酸分子(aconitic acid)-亞甲基丁二酸分子(itaconic acid)和甲基順丁烯二酸分子(citraconic acid),最後在500℃煆燒,有機酸分子完全崩解破壞。微量的碳酸鋇(BaCO3)和中間相(Ba2Ti2O5CO3)在550~600℃之間先行生成,而在空氣中700℃、不持溫煆燒,可以合成完全單相的鈦酸鋇。
在鋇鈦檸檬酸凝膠的性質與熱分解行為方面,調整檸檬酸和鋇離子之莫耳比例,對鋇鈦檸檬酸凝膠中的分子配位情形與鈦酸鋇的合成機構,並無明顯的影響,而鋇鈦檸檬酸溶液中,檸檬酸分子螯合鍵結陽離子的方式,是以類似於檸檬酸鋇鈦錯化合物的分子配位型態存在,此種分子配位型態並不會因溶液pH值的調整而有所改變。提高鋇鈦檸檬酸溶液的pH值,發生於乙二醇的醇基和檸檬酸的酸基之酯化反應會被抑制,其螯合分子間聚合鏈結的方式是藉由形成酸酐來達成,造成加熱蒸發較不易形成黏稠狀的凝膠。除此之外,提高鋇鈦檸檬酸溶液的pH值,其酸根螯合鍵結陽離子的鍵結強度較強,造成其前導粉末需在較高溫度煆燒,才能使有機成份崩解破壞,而pH值的高低對中間相(Ba2Ti2O5CO3)的生成和鈦酸鋇的合成機構並無多大影響。
在鈦酸鋇陶瓷粉末的性質方面,900℃煆燒4小時後所合成之完全單相的鈦酸鋇陶瓷粉末,其結團的凝聚強度並不高,可以藉由短時間的濕式球磨予以擊散。另外,鈦酸鋇陶瓷生胚在1350℃燒結可以獲得最高的燒結密度;約為98.6%Dth左右,超過此溫度進行燒結會產生異常晶粒成長的現象,而且燒結密度會下降。至於在1325℃燒結的鈦酸鋇陶瓷體,其k25=4122,而在1375℃燒結的鈦酸鋇陶瓷體,其k25=2310,兩組試片的Tc≒127℃。
In this investigation, FT-IR and 13C-NMR spectroscopy were used to study the synthesis of barium titanate powder by the citrate process. The experimental parameter of initial barium titanium citric solution, the properties and thermal decomposition behaviors of barium titanium citrate (BTC) and barium titanium citric gel, and the sintering behavior and dielectric property of barium titanate were investigated.
The stabilization of titanium alkoxide could be achieved by reacting the citric acid only, and it could be affected by the mixing sequence of citric acid and ethylene glycol. Several experiments were conducted to study the effects of the molar ratio of citric acid to cations and the pH value on the chemistry in the solution of the Pechini method. It was found that two kinds of precipitates, the barium titanium citrate (BaTi(C6H6O7)3+6H2O) and the barium citrate (Ba(C6H6O7)+xH2O), developed under some conditions.
Characterization of BTC by FT-IR spectroscopy and solid-state 13C-NMR spectroscopy indicated that barium and titanium ion were stimultaneously chelated by the central deprotonated alcoholic ligands and dissociated carboxylic acid groups with a unidentate type of three citric acid molecules. The possible coordinated structure of BTC was proposed. The thermal decomposition behavior of BTC was investigated by means of X-ray powder diffraction, FT-IR spectroscopy, and solid-state 13C-NMR spectroscopy. The water might be the zeolite type water and physically adsorbed on the surface of the barium titanium citrate. During decomposition, the nature of the bonding between carboxylate groups and cations changed: unidentate -bridging -ionic, and the molecular structure of carboxylic acid changed: citric acid -aconitic acid -itaconic acid or citraconic acid, and carbonate species were detected at 500℃. A small amount of BaCO3 and the intermediate oxycarbonate coexisted at 550~600℃.
The molar ratio of barium ion and citric acid seemed not to influence the coordinated structure in barium titanium citric gel and the formation mechanism of BaTiO3. The coordinated structure of citric acid and cations in barium titanium solution was not affected by adjusting the pH value of solution and might be similar to that of BTC. The esterification reaction between citric acid and ethylene glycol and gelation of barium titanium citric solution was inhibited at higher pH value. The pH value could affect the bonding strength between the carboxylic acid ligands and metal ions and the formation of BaCO3 at lower temperature during the thermal decomposition of barium titanium precursor powder but has no influence on the formation mechanism of intermediate carbonate (Ba2Ti2O5CO3) and BaTiO3.
The agglomerated strength of BaTiO3 powder by calcining at 900℃, 4hr was not strong, could be deagglomerated by wet milling easily. A highest relative density (98.6%Dth) was acieved by sintering BaTiO3 at 1350℃. The abnormal grain growth and pore growth were observed by sintering BaTiO3 over 1350℃. The relative dielectric constant at 25℃ (k25) were 4122 and 2310 by sintering at 1325 and 1375℃, respectively, and Curie temperature (Tc) was 127℃.
封面
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
1-1 前言
1-2 本研究之重點及目的
第二章 理論基礎與文獻回顧
2-1 鈦酸鋇的基本性質
2-1-1 鈦酸鋇單晶的晶體結構及介電性質
2-1-2 多晶鈦酸鋇陶瓷的介電性質
2-1-3 組成對鈦酸鋇陶瓷之顯微結構與電性的影響
2-2 鈦酸鋇陶瓷粉末的合成
2-2-1 固態反應法
2-2-2 化學共沈法
2-2-3 水熱合成法
2-2-4 溶膠凝膠法
2-3 檸檬酸製程
2-3-1 檸檬酸錯化合物法
2-3-2 檸檬酸凝膠法
2-4 紅外線光譜
2-4-1 分子振動
2-4-2 霍氏轉換紅外線光譜儀
2-5 核磁共振光譜
2-5-1 核磁共振的基本原理
2-5-1.1 原子核的性質
2-5-1.2 核磁共振的產生
2-5-1.3 化學偏移與弛緩現象
2-5-2 核磁共振光譜
2-5-2.1 共振訊號處理
2-5-2.2 核磁共振光譜儀
第三章 實驗方法與步驟
3-1 化學藥品的選用
3-2 實驗流程及樣品準備
3-2-1 探討鋇鈦檸檬酸溶液之製備參數的實驗流程
3-2-1.1 製備參數對安定鈦烷氧化物的影響
3-2-1.2 鋇鈦檸檬酸溶液的製備
3-2-2 探討檸檬酸鋇鈦錯化合物的實驗流程
3-2-3 探討鋇鈦檸檬酸凝膠的實驗流程
3-2-3.1 不含陽離子、只含鋇離子和只含鈦離子之檸檬酸凝膠的探討
3-2-3.2 檸檬酸和鋇離子之莫耳比例對鋇鈦檸檬酸凝膠的影響
3-2-3.3 起始溶液的pH值對鋇鈦檸檬酸凝膠的影響
3-2-4 探討所合成之鈦酸鋇陶瓷末性質的實驗流程
3-3 性質的量測
3-3-1 X光繞射分析
3-3-2 霍氏轉換紅外線光譜分析
3-3-3 C核磁共振光譜分析
3-3-4 熱重加熱差分析
3-3-5 密度量測
3-3-6 SEM 顯微結構觀察
3-3-7 電性量測
第四章 結果與討論
4-1 鋇鈦檸檬酸溶液之製備參數的探討
4-1-1 製備參數對安定鈦烷氧化物之影響
4-1-2 調整檸檬酸和鋇離子的莫耳比例與溶液的pH值對鋇鈦檸檬酸溶液之影響
4-1-3 鋇鈦檸檬酸溶液之影響
4-2 檸檬酸鋇鈦錯化合物的探討
4-2-1 檸檬酸鋇鈦錯化合物之性質
4-2-2 檸檬酸鋇鈦錯化合物之分子配合結構
4-2-3 檸檬酸鋇鈦錯化合物之熱分解行為
4-3 鋇鈦檸檬酸凝膠的探討
4-3-1 不含陽離子、只含鋇離子和只含鈦離子之檸檬酸凝膠的探討
4-3-2 檸檬酸和鋇離子之莫耳比例對鋇鈦檸檬酸凝膠的影響
4-3-3 起始溶液之pH值對鋇鈦檸檬酸凝膠的影響
4-3-3.1 pH值對鋇鈦檸檬酸凝膠的影響
4-3-3.2 pH值對鋇鈦檸檬酸前導粉末的影響
4-3-3.3 鋇鈦檸檬酸前導粉末的熱分解行為
4-4 鈦酸鋇陶瓷粉末的性質
4-4-1 粉末的結團性
4-4-2 粉末的燒結行為
4-4-3 燒結體的介電性質
第五章 結論
第六章 附錄
1. G. Shirane, F. Jona, and R. Pepinsky, *Some Aspects of Ferroelectricity*, Proc. IRE, 43, pp. 1738-1793 (1955).
2. B. Jaffe, W. R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics, pp. 53-114, Academic Press, New York (1971).
3. W. J. Merz, *The Electric and Optical Behavior of BaTiO3 Single Domain Crystals*, Phys. Rev., 76, pp. 1221-1225 (1949).
4. G. Arlt and P. Sasko, *Domain Configuration and Equilibrium Size of Domains in BaTiO3 Ceramics*, J. Appl. Phys., 51(9), pp. 4956-4960 (1980).
5. M. Tanaka and G. Honjo, *Electron Optical Studies of Barium Titanate Single Crystal Films*, J. Phys. Soc. Jap., 19, pp. 954-970 (1964).
6. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, p. 497, John Wiley & Sons, New York (1976).
7. H. Kniekamp and W. Heywang, *Depolarization Effects in Polycrystalline BaTiO3*, Z. Angew. Phys., 6, pp. 385-390 (1954).
8. K. Kinoshita and A. Yamaji, *Grain-Size Effects on Dielectric Properties in Barium Titanate Ceramics*, J. Appl. Phys., 47(1), pp. 371-373 (1976).
9. G. Arlt, D. Hennings, and G. de With, *Dielectric Properties of Fine-Grained Barium Titanate Ceramics*, J. Appl. Phys., 58(4), pp. 1619-1625 (1985).
10. G. Arlt, *The Influence of Microstructure on the Properties of Ferroelectric Ceramics*, Ferroelectrics, 104, pp. 217-227 (1990).
11. T. -T. Fang, H. -L. Hsieh, and F. -S. Shiau, *Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High Purity Barium Titanate*, J. Am. Ceram. Soc., 76(5), pp. 1205-1211 (1993).
12. R. P. S. M. Lobo, N. D. S. Mohallem, and R. L. Moreira, *Grain Size Effects on Diffuse Phase Transitions of Sol-Gel prepared Barium Titanate Ceramics*, J. Am. Ceram. Soc., 78(5), pp. 1343-1346 (1995).
13. M. H. Frey and D. A. Payne, *Grain-Size Effect on Structure and Phase Transformations for Barium Titanate*, Phys. Rev. B, 54(5), pp. 3158-3168 (1996).
14. D. E. Rase and R. Roy, *Phase Equilibria in the System BaO-TiO2*, J. Am. Ceram. Soc., 38(3), pp. 102-113 (1955).
15. R. K. Sharma, N. -H. Chan, and D. M. Smyth, *Solubility of TiO2 in BaTiO3*, J. Am. Ceram. Soc., 64(8), pp. 448-451 (1981).
16. Y. H. Hu, M. P. Harmer, and D. M. Smyth, *Solubility of BaO in BaTiO3*, J. Am. Ceram. Soc., 68(7), pp. 372-376 (1985).
17. K. W. Kirby and B. A. Wechsler, *Phase Relations in the Barium Titanate-Titanium Oxide System*, J. Am. Ceram. Soc., 74(8), pp. 1841-1847 (1991).
18. A. K. Maurice and R. C. Buchanan, *Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3*, Ferroelectrics, 74, pp. 61-75 (1987).
19. T. Yamamoto, *Influence of Small Ba/Ti Non-stoichiometry on Grain Growth Behavior in Barium Titanate*, Bri. Ceram. Trans., 94(5), pp. 196-200 (1995).
20. M. P. Harmer, Y. H. Hu, M. Lal, and D. M. Smyth, *The Effects of Composition and Microstructure on Electrical Degradation in BaTiO3*, Ferroelectrics, 49, pp. 71-74 (1983).
21. N. -H. Chan, R. K. Sharma, and D. M. Smyth, *Nonstoichiometry in Undoped BaTiO3*, J. Am. Ceram. Soc., 64(9), pp. 556-562 (1981).
22. H. U. Anderson, *Influence of Ba/Ti Ratio on the Initial Sintering Kinetics of BaTiO3*, J. Am. Ceram. Soc., 56(11), pp. 605-606 (1973).
23. J. F. Murray, *Some Causes and Effects of Phases Other Than Tetragonal BaTiO3 in Barium Titanate*, Am. Ceram. Soc. Bull., 37(11), pp. 476-479 (1958).
24. A. Beauger, J. C. Mutin, and J. C. Niepce, *Role and Behavior of Orthotitanate Ba2TiO4 during the Processing of BaTiO3 Based Ferroelectric Ceramics*, J. Mater. Sci., 19, pp. 195-201 (1984).
25. L. K. Templeton and J. A. Pask, *Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2*, J. Am. Ceram. Soc., 42(5), pp. 212-216 (1959).
26. 久保輝一郎, 加藤誠軌, and 藤田恭, *酸化 炭酸 固相反應*, 工業化學雜誌, 70(6), pp. 847-853 (1967).
27. T. Nomura and T. Yamaguchi, *TiO2 Aggregation and Sintering of BaTiO3 Ceramics*, Am. Ceram. Soc. Bull., 59(4), pp. 453-456 (1980).
28. A. Beauger, J. C. Mutin, and J. C. Niepce, *Synthesis Reaction of Metatitanate BaTiO3:Part 1 Effect of the Gaseous Atmosphere upon the Thermal Evolution of the System BaCO3-TiO2*, J. Mater. Sci., 18, pp. 3041-3046 (1983).
29. A. Beauger, J. C. Mutin, and J. C. Niepce, *Synthesis Reaction of Metatitanate BaTiO3:Part 2 Study of Solid-Solid Reaction Interfaces*, J. Mater. Sci., 18, pp. 3543-3550 (1983).
30. J. C. Mutin, and J. C. Niepce, *About Stoichiometry of Polycrystalline BaTiO3 Synthesized by Solid-Solid Reaction*, J. Mater. Sci. Lett., 3, pp. 591-592 (1984).
31. A. Amin, M. A. Spears, and B. M. Kulwicki, *Reaction of Anatase and Rutile with Barium Carbonate*, J. Am. Ceram. Soc., 66(10), pp. 733-738 (1983).
32. J. F. Fernandez, P. Duran, and C. Moure, *Dielectric and Microstructural Properties of Sintered BaTiO3 Ceramics Prepared form Different TiO2 Raw Materials*, J. Mater. Sci., 26, pp. 3257-3263 (1991).
33. M. Kakihana, *Sol-Gel Preparation of High Temperature Superconducting Oxides*, J. Sol-Gel Sci. Tech., 6, pp. 7-55 (1996).
34. M. -S. Wu and T. -T. Fang, *Morphology and Thermal Decomposition Behavior of Coprecipitated La-Ba-Cu Oxalate*, Mater. Chem. Phys., 37, pp. 278-283 (1994).
35. M. -S. Wu and T. -T. Fang, *A Model for the Preparation of Coprecipitated LaBa2Cu3Oy Oxalates*, Mater. Chem. Phys., 37, pp. 284-287 (1994).
36. W. S. Clabaugh, E. M. Swiggard, and R. Gilchrist, *Preparation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity*, J. Res. Natl. Bur. Std., 56(5), pp. 289-291 (1956).
37. F. Schrey, *Effect of pH on the Chemical Preparation of Barium-Strontium Titanate*, J. Am. Ceram. Soc., 48(8), pp. 401-405 (1965).
38. K. Kudaka, K. Iizumi, and K. Sasaki, *Preparation of Stoichiometric Barium Titanyl Oxalate Tetrahydrate*, Am. Ceram. Soc. Bull., 61, p. 1236 (1982).
39. H. Yamamura, A. Watanabe, S. Shirasaki, Y. Moriyoshi, and M. Tanada, *Preparation of Barium Titanate by Oxalate Method in Ethanol Solution*, Ceram. Int., 11(1), pp. 17-22 (1985).
40. T. -T. Fang and H. -B. Lin, *Factors Affecting the Preparation of Barium Titanyl Oxalate Tetrahydrate*, J. Am. Ceram. Soc., 72(10), pp. 1899-1906 (1989).
41. M. Stockenhuber, H. Mayer, and J. A. Lercher, *Preparation of Barium Titanates from Oxalates*, J. Am. Ceram. Soc., 76(5), pp. 1185-1190 (1993).
42. P. K. Dutta, P. K. Gallagher, and J. Twu, *Raman Spectroscopic Study of the Formation of Barium Titanate from an Oxalate Precursor*, Chem. Mater., 5, pp. 1739-1743 (1993).
43. F. -S. Yen, C. T. Chang, and Y. -H. Chang, *Characterization of Barium Titanyl Oxalate Tetrahydrate*, J. Am. Ceram. Soc., 73(11), pp. 3422-3427 (1990).
44. P. K. Gallagher and F. Schrey, *Thermal Decomposition of Some Substituted Barium Titanyl Oxalates and Its Effect on the Semiconducting Properties of the Doped Materials*, J. Am. Ceram. Soc., 46(12), pp. 567-573 (1963).
45. P. K. Gallagher and J. Thomson, Jr., *Thermal Analysis of Some Barium and Strontium Titanyl Oxalates*, J. Am. Ceram. Soc., 48(12), pp. 644-647 (1965).
46. H. S. Gopalakrishnamurthy, M. S. Rao, and T. R. N. Kutty, *Thermal Decomposition of Titanyl Oxalates -I, Barium Titanyl Oxalate*, J. Inorg. Nucl. Chem., 37, pp. 891-898 (1975).
47. H. S. Gopalakrishnamurthy, M. S. Rao, and T. R. N. Kutty, *Thermal Decomposition of Titanyl Oxalates -II, Kinetics of Decomposition of Barium Titanyl Oxalate*, J. Inorg. Nucl. Chem., 37, pp. 1875-1878 (1975).
48. T. -T. Fang, H. -B. Lin, and J. -B. Hwang, *Thermal Analysis of Precursors of Barium Titanate Prepared by Coprecipitation*, J. Am. Ceram. Soc., 73(11), pp. 3363-3367 (1990).
49. Z. H. Park, H. S. Shin, B. K. Lee, and S. H. Cho, *Particle Size Control of Barium Titanate Prepared from Barium Titanyl Oxalate*, J. Am. Ceram. Soc., 80(6), pp. 1599-1604 (1997).
50. N. M. Ghoneim, S. Hanafi, and T. Salem, *Effect of Calcination on Characteristics, Surface Texture and Sinterability of Chemically Prepared Barium Titanate*, J. Mater. Sci., 25, pp. 3241-3248 (1990).
51. J. H. Peterson, *Process for Producing Insoluble Titanates*, U. S. Pat., No. 2 216 655, Oct. 22, 1940.
52. S. Kaneko and F. Imoto, *Synthesis of Fine-Grained Barium Titanate by a Hydrothermal Reaction*, Nippon Kagaku Kaishi, 6, pp. 985-990 (1975).
53. N. A. Ovramenko, L. I. Shvets, F. D. Ovcharenko, and B. Y. Kornilovich, *Kinetics of Hydrothermal Synthesis of Barium Metatitanate*, Izv. Akad. Nauk. SSSR. Neorg. Mater., 15(11), pp. 1982-1985 (1979).
54. A. N. Christensen, *Hydrothermal Preparation of Barium Titanate by Transport Reactions*, Acta. Chem. Scand., 24(7), pp. 2447-2452 (1970).
55. H. Kumazawa, S. Annen, and E. Sada, *Hydrothermal Synthesis of Barium Titanate Fine Particles from Amorphous and Crystalline Titania*, J. Mater. Sci., 30, pp. 4740-4744 (1995).
56. H. Kumazawa, T. Kagimoto, and A. Kawabata, *Preparation of Barium Titanate Ultrafine Particles from Amorphous Titania by a Hydrothermal Method and Specific Dielectric Constants of Sintered Discs of the Prepared Particles*, J. Mater. Sci., 31, pp. 2599-2602 (1996).
57. T. R. N. Kutty, R. Vivekanandan , and P. Murugaraj, *Precipitation of Rutile and Anatase (TiO2) Fine Powders and their Conversion to MTiO3 (M=Ba, Sr, Ca) by the Hydrothermal Method*, Mater. Chem. Phys., 19, pp. 533-546 (1988).
58. S. Urek and M. Drofenik, *The Hydrothermal Synthesis of BaTiO3 Fine Particles from Hydroxide-Alkoxide Precursors*, J. Eur. Ceram. Soc., 18, pp. 279-286 (1998).
59. R. Vivekanandan, S. Philip, and T. R. N. Kutty, *Hydrothermal Preparation of Ba(Ti, Zr)O3 Fine Powders*, Mater. Res. Bull., 22, pp. 99-108 (1986).
60. S. M. Neirman, *The Curie Point Temperature of Ba(Ti1-xZrx)O3 Solid Solutions*, J. Mater. Sci., 23, pp. 3973-3980 (1988).
61. K. Fukai, K. Hidaka, M. Aoki, and K. Abe, *Preparation and Properties of Uniform Fine Perovskite Powders by Hydrothermal Synthesis*, Ceram. Int., 16, pp. 285-290 (1990).
62. M. M. Lencka and R. E. Riman, *Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders*, Chem. Mater., 5(1), pp. 61-70 (1993).
63. M. M. Lencka and R. E. Riman, *Hydrothermal Synthesis of Perovskite Materials:Thermodynamic Modeling and Experimental Verification*, Ferroelectrics, 151, pp. 159-164 (1994).
64. M. M. Lencka and R. E. Riman, *Synthesis of Lead Titanate:Thermodynamic Modeling and Experimental Verification*, J. Am. Ceram. Soc., 76(10), pp. 2649-2659 (1993).
65. W. Hertl, *Kinetics of Barium Titanate Synthesis*, J. Am. Ceram. Soc., 71(10), pp. 879-883 (1988).
66. J. O. Eckert, Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, *Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate*, J. Am. Ceram. Soc., 79(11), pp. 2929-2939 (1996).
67. R. Vivekanandan and T. R. N. Kutty, *Characterization of Barium Titanate Fine Powders Formed from Hydrothermal Crystallization*, Powder Technol., 57, pp. 181-192 (1989).
68. E. -W. Shi, C. -T. Xia, W. -Z. Zhong, B. -G. Wang, and C. -D. Feng, *Crystallographic Properties of Hydrothermal Barium Titanate Crystallites*, J. Am. Ceram. Soc., 80(6), pp. 1567-1572 (1997).
69. K. Kajiyoshi, N. Ishizawa, and M. Yoshimura, *Preparation of Tetragonal Barium Titanate Thin Film on Titanium Metal Substrate by Hydrothermal Method*, J. Am. Ceram. Soc., 74(2), pp. 369-374 (1991).
70. E. Shi, C. R. Cho, M. S. Jang, S. Y. Jeong, and H. J. Kim, *The Formation Mechanism of Barium Titanate Thin Film under Hydrothermal Conditions*, J. Mater. Res., 9(11), pp. 2914-2918 (1994).
71. E. B. Slamovich and I. A. Aksay, *Structure Evolution in Hydrothermally Processed (<100oC) BaTiO3 Films*, J. Am. Ceram. Soc., 79(1), pp. 239-247 (1996).
72. A. T. Chien, L. Zhao, M. Colic, J. S. Speck, and F. F. Lange, *Microstructural Development of BaTiO3 Heteroepitaxial Thin Film by Hydrothermal Synthesis*, J. Mater. Res., 13(3), pp. 649-659 (1998).
73. C. J. Brinker and G. W. Scherer, Sol-Gel Science, pp. 2-11, Academic Press, New York (1990).
74. T. Svedberg and A. Tiselius, Colloid Chemistry, 2nd edition, pp. 18-19, The Chemical Catalog Company, New York (1928).
75. 王惠昌, *烷氧衍生氧化鋯粉末、凝膠與薄膜之製備及其介穩晶相研究*, p. 6, 國立成功大學礦冶及材料科學研究所博士論文, 1991.
76. D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, p. 1, Academic Press, New York (1978).
77. H. Okamura and H. K. Bowen, *Preparation of Alkoxides for the Synthesis of Ceramics*, Ceram. Int., 12, pp. 161-171 (1986).
78. 王惠昌, *烷氧衍生氧化鋯粉末、凝膠與薄膜之製備及其介穩晶相研究*, pp. 17-21, 國立成功大學礦冶及材料科學研究所博士論文, 1991.
79. C. J. Brinker and G. W. Scherer, Sol-Gel Science, pp. 43-47, Academic Press, New York (1990).
80. D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, pp. 150-167, Academic Press, New York (1978).
81. J. Livage and C. Sanchez, *Sol-Gel Chemistry*, J. Non-Cryst. Solids, 145, pp. 11-19 (1992).
82. C. Lemoine, B. Gilbert, B. Michaux, J. -P. Pirard, and A. J. Lecloux, *Synthesis of Barium Titanate by the Sol-Gel Process*, J. Non-Cryst. Solids, 175, pp. 1-13 (1994).
83. M. H. Frey and D. A. Payne, *Synthesis and Processing of Barium Titanium Ceramics from Alkoxide Solutions and Monolithic Gels*, Chem. Mater., 7, pp. 123-129 (1995).
84. H. Shimooka and M. Kuwabara, *Preparation of Dense BaTiO3 Ceramics from Sol-Gel-Derived Monolithic Gels*, J. Am. Ceram. Soc., 78(10), pp. 2849-2852 (1995).
85. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, *Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid*, J. Non-Cryst. Solids, 89, pp. 206-216 (1987).
86. T. Yoko, K. Kamiya, and K. Tanaka, *Preparation of Multiple Oxide BaTiO3 Fibres by the Sol-Gel Method*, J. Mater. Sci., 25, pp. 3922-3929 (1990).
87. P. D. Godbole, S. B. Deshpande, H. S. Potdar, and S. K. Date, *Sol-Gel Synthesis of Barium Titanate Using Barium Carbonate with Glacial Acetic Acid and Butyl Titanate monomer*, Mater. Lett., 12, pp. 97-101 (1991).
88. C. Zhixiong, Z. Fanggiao, L. Meidong, W. Guoan, and P. Xiangsheng, *Sol-Gel Derived BaTiO3 Ceramics*, Ferroelectrics, 123, pp. 61-67 (1991).
89. J. P. Grammatico and J. M. P. Lopez, *Reaction Sequences in the Systems Ti(O-iPr)4+Ba(CH3COO)2 and TiO2+Ba(CH3COO)2*, J. Mater. Sci. Elec., 3, pp. 82-86 (1992).
90. W. -K. Kuo and Y. -C. Ling, *Effects of Mono-substituting Chelating Agents on BaTiO3 Prepared by the Sol-Gel Process*, J. Mater. Sci., 29, pp. 5625-5630 (1994).
91. U. Hasenkox, S. Hoffmann, and R, Waser, *Influence of Precursor Chemistry on the Formation of MTiO3 (M=Ba, Sr) Ceramic Thin Films*, J. Sol-Gel Sci. Tech., 12, pp. 67-79 (1998).
92. P. P. Phule and S. H. Risbud, *Low Temperature Synthesis and Dielectric Properties of Ceramics Derived from Amorphous Barium Titanate Gels and Crystalline Powders*, Mater. Sci. Eng. B, 3, pp. 241-247 (1989).
93. F. Chaput, J. -P. Boilot, and A. Beauger, *Alkoxide-Hydroxide Route to Synthetize BaTiO3-Based Powders*, J. Am. Ceram. Soc., 73(4), pp. 942-948 (1990).
94. A. Mosset, I. G. -Luneau, and J. Galy, *Sol-Gel Processed BaTiO3:Structural Evolution from the Gel to the Crystalline Powder*, J. Non-Cryst. Solids, 100, pp. 339-344 (1988).
95. H. Shimooka and M. Kuwabara, *Local Structure and Crystallization Mechanism at Room Temperature of Sol-Gel-Derived Barium Titanate Monolithic Gels*, J. Ceram. Soc. Jap., 105-868 (1997).
96. M. C. Gust, N. D. Evans, L. A. Momoda, and M. L. Mecartney, *In-Situ Transmission Electron Microscopy Crystallization Studies of Sol-Gel-Derived Barium Titanate Thin Films*, J. Am. Ceram. Soc., 80(11), pp. 2828-2836 (1997).
97. 林正雄, *利用水熱法製造陶瓷粉末及利用微波燒結陶瓷*, 國科會計劃 NSC 0180-262-J4報告, 1980.
98. M. P. Pechini, *Barium Titanium Citrate, Barium Titanate and Processes for Producing Same*, U. S. Pat., No. 3 231 328, Jan. 25, 1966.
99. D. Hennings and W. Mayr, *Thermal Decomposition of (BaTi) Citrates into Barium Titanate*, J. Solid State Chem., 26, pp. 329-338 (1978).
100. G. A. Hutchins, G. H. Maher, and S. D. Ross, *Control of the Ba:Ti Ratio of BaTiO3 at a Value of Exactly 1 via Conversion to BaO*TiO2*3C6H8O7*3H2O*, Am. Ceram. Soc. Bull., 66(4), pp. 681-684 (1987).
101. M. Rajendran and M. S. Rao, *Formation of BaTiO3 from Citrate Precursor*, J. Solid State Chem., 113, pp. 239-247 (1994).
102. B. J. Mulder, *Preparation of BaTiO3 and Other Ceramic Powders by Coprecipitation of Citrates in an Alcohol*, Am. Ceram. Soc. Bull., 49(11), pp. 990-993 (1970).
103. M. P. Pechini, *Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor*, U. S. Pat., No. 3 330 697, Jul. 11, 1967.
104. K. D. Budd and D. A. Payne, *Preparation of Strontium Titanate Ceramics and Internal Boundary Layer Capacitors by the Pechini Method*, Mater. Res. Soc. Symp. Proc., 32, pp. 239-244 (1984).
105. L. M. Falter, D. A. Payne, T. A. Friedmann, W. H. Wright, and D. M. Ginsberg, *Preparation of Ceramic Superconductors by the Pechini Method*, Bri. Ceram. Proc., 41, pp. 261-269 (1988).
106. S. G. Cho, P. F. Johnson, and R. A. Condrate Sr, *Thermal Decomposition of (Sr, Ti) Organic Precursors during the Pechini Process*, J. Mater. Sci., 25, pp. 4738-4744 (1990).
107. S. Kumar and G. L. Messing, *Synthesis of Barium Titanate by a Basic pH Pechini Process*, Mater. Res. Soc. Symp. Proc., 271, pp. 95-100 (1992).
108. H. Salze, P. Odier, and B. Cales, *Elaboration of Fine Micropowders from Organometallic Polymers Precursors*, J. Non-Cryst. Solids, 82, pp. 314-320 (1986).
109. P. A. Lessing, *Mixed-Cation Oxide Powders via Polymeric Precursors*, Am. Ceram. Soc. Bull., 68(5), pp. 1002-1007 (1989).
110. L. -W. Tai and P. A. Lessing, *Modified Resin-Intermediate Processing of Perovskite Powders:Part I. Optimization of Polymeric Precursors*, J. Mater. Res., 7(2), pp. 502-510 (1992).
111. E. R. Leite, C. M. G. Sousa, E. Longo, and J. A. Varela, *Influence of Polymerization on the Synthesis of SrTiO3:Part I. Characteristics of the Polymeric Precursors and their Thermal Decomposition*, Ceram. Int., 21, pp. 143-152 (1995).
112. A. Bianco, M. Paci, and R. Freer, *Zirconium Titanate:from Polymeric Precursors to Bulk Ceramics*, J. Eur. Ceram. Soc., 18, pp. 1235-1243 (1998).
113. M. Kakihana, M. M. Milanova, M. Arima, T. Okubo, M. Yashima, and M. Yoshimura, *Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750oC Using Yttrium-Titanium Mixed-Metal Citric Acid Complex*, J. Am. Ceram. Soc., 79(6), pp. 1673-1676 (1996).
114. M. Arima, M. Kakihana, Y. Nakamura, M. Yashima, and M. Yoshimura, *Polymerized Complex Route to Barium Titanate Powders Using Barium-Titanium Mixed-Metal Citric Acid Complex*, J. Am. Ceram. Soc., 79(11), pp. 2847-2856 (1996).
115. J. Ma, M. Yoshimura, M. Kakihana, and M. Yashima, *Synthesis of ZrO2-Y6WO12 Solid Solution Powders by a Polymerized Complex Method*, J. Mater. Res., 13(4), pp. 939-943 (1998).
116. M. Kakihana, T. Okubo, M. Arima, Y. Nakamura, M. Yashima, and M. Yoshimura, *Polymerized Complex Route to the Synthesis of Pure SrTiO3 at Reduced Temperatures:Implication for Formation of Sr-Ti Heterometallic Citric Acid Complex*, J. Sol-Gel Sci. Tech., 12, pp. 95-109 (1998).
117. J. P. Coutures, P. Odier, and C. Proust, *Barium Titanate Formation by Organic Resins Formed with Mixed Citrate*, J. Mater. Sci., 27, pp. 1849-1856 (1992).
118. S. Kumar, G. L. Messing, and W. B. White, *Metal Organic Resin Derived Barium Titanate:I, Formation of Barium Titanium Oxycarbonate Intermediate*, J. Am. Ceram. Soc., 76(3), pp. 617-624 (1993).
119. S. Kumar and G. L. Messing, *Metal Organic Resin Derived Barium Titanate:II, Kinetics of BaTiO3 Formation*, J. Am. Ceram. Soc., 77(11), pp. 2940-2948 (1994).
120. E. R. Leite, J. A. Varela, E. Longo, and C. A. Paskocimas, *Influence of Polymerization on the Synthesis of SrTiO3:Part II. Particle and Agglomerate Morphologies*, Ceram. Int., 21, pp. 153-158 (1995).
121. W. -J. Lee and T. -T. Fang, *The Effect of the Molar Ratio of Cations and Citric Acid on the Synthesis of Barium Ferrite Using a Citrate Process*, J. Mater. Sci., 30, pp. 4349-4354 (1995).
122. W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, and Q. Yan, *Preparation and Magnetic Properties of Barium Hexaferrite Nanoparticles Produced by the Citrate Process*, J. Am. Ceram. Soc., 80(12), pp. 3258-3262 (1997).
123. L. -W. Tai and P. A. Lessing, *Modified Resin-Intermediate Processing of Perovskite Powders:Part II. Processing for Fine, Nonagglomerated Sr-doped Lanthanum Chromite Powders*, J. Mater. Res., 7(2), pp. 511-519 (1992).
124. C. Marcilly, P. Courty, and B. Delmon, *Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors*, J. Am. Ceram. Soc., 53(1), pp. 56-57 (1970).
125. M. S. G. Baythoun and F. R. Sale, *Production of Strontium-Substituted Lanthanum Manganite Perovskite Powder by the Amorphous Citrate Process*, J. Mater. Sci., 17, pp. 2757-2769 (1982).
126. J. -H. Choy and Y. -S. Han, *Citrate Route to the Piezoeletric Pb(Zr,Ti)O3 Oxide*, J. Mater. Chem., 7(9), pp. 1815-1820 (1997).
127. J. -H. Choy, Y. -S. Han, J. -T. Kim, and Y. -H. Kim, *Citrate Route to Ultra-Fine Barium Polytitanates with Microwave Dielectric Properties*, J. Mater. Chem., 5(1), pp. 57-63 (1995).
128. J.-H. Choy, Y. -S. Han, S. -H. Hwang, S. -H. Byeon, and G. Demazeau, *Citrate Route to Sn-Doped BaTi4O9 with Microwave Dielectric Properties*, J. Am. Ceram. Soc., 81(12), pp. 3197-3204 (1998).
129. C. Miot, E. Husson, C. Proust, R. Erre, and J. P. Coutures, *X-ray Photoelectron Spectroscopy Characterization of Barium Titanate Ceramics Prepared by the Citric Route. Residual Carbon Study*, J. Mater. Res., 12(9), pp. 2388-2392 (1997).
130. C. Miot, C. Proust, E. Husson, G. Blondiaux, and J. P. Coutures, *Ageing Influence on Residual Carbon Content in Different Grain-Sized BaTiO3 Ceramics Analysed by 12C(d, p) 13C Nuclear Method*, J. Eur. Ceram. Soc.,17, pp. 1335-1340 (1997).
131. Infrared and Raman Spectroscopy, edited by B. Schrader, pp. 8-16, VCH Publishers, Inc., New York (1995).
132. 彭國文, *鈉鈦矽石(Na2TiOSiO4)與鍺酸鈦鈉(Na2TiOGeO4)系材料之熱水溶液製備、結晶化學及光譜性質研究*, pp. 26-34, 國立成功大學礦冶及材料科學研究所博士論文, 1996.
133. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, pp. 3-12, John Wiley & Sons, U. S. A. (1986).
134. B. George and P. Mclntyre, Infrared Spectroscopy, pp. 16-42, John Wiley & Sons, London (1987).
135. B. George and P. Mclntyre, Infrared Spectroscopy, pp. 81-101, John Wiley & Sons, London (1987).
136. Infrared and Raman Spectroscopy, edited by B. Schrader, pp. 123-135, VCH Publishers, Inc., New York (1995).
137. 陳壽康, *CaO-TiO2-SiO2玻璃結構與結晶行為之研究*, pp. 17-18, 國立成功大學礦冶及材料科學研究所博士論文, 1994.
138. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, pp. 312-337, John Wiley & Sons, New York (1986).
139. B. S. H. Royce and J. Alexander, *Fourier Transform Photoacoustic Spectroscopy of Solids*, pp. 9-18 in Photoacoustic and Photothermal Phenomena, Proceedings of the 5th International Topical Meeting (Heidelberg, F. R. G., Jul., 1987). Edited by P. Hess and J. Pelzl, Springer-Verlag, New York (1987).
140. R. K Harris, Nuclear Magnetic Resonance Spectroscopy, pp. 2-14, Longman Scientific & Technical, U. K. (1986).
141. J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy, 2nd edition, pp. 11-24, Oxford University Press, New York (1993).
142. D. A. R. Williams, Nuclear Magnetic Resonance Spectroscopy, pp. 139-144, John Wiley & Sons, New York (1986).
143. R. Freeman, A Handbook of Nuclear Magnetic Resonance, pp. 80-91, Longman Scientific & Technical, U. K. (1988).
144. D. A. R. Williams, Nuclear Magnetic Resonance Spectroscopy, pp. 64-76, John Wiley & Sons, New York (1986).
145. R. K Harris, Nuclear Magnetic Resonance Spectroscopy, pp. 144-164, Longman Scientific & Technical, U. K. (1986).
146. Y. Ozaki, *Ultrafine Electroceramic Powder Preparation from Metal Alkoxides*, Ferroelectrics, 49, pp. 285-296 (1983).
147. E. A. Barringer and H. K. Bowen, *High-Purity, Monodisperse TiO2 Powders by Hydrolysis of Titanium Tetraethoxide. 1. Synthesis and Physical Properties*, Langmuir, 1, pp. 414-420 (1985).
148. D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, pp. 27-33, Academic Press, New York (1978).
149. D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, pp. 183-195, Academic Press, New York (1978).
150. D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, pp. 195-209, Academic Press, New York (1978).
151. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th edition, rev., p. 73, Mcgraw-Hill, London (1989).
152. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, 2nd edition, p. 147, Saunders College Publishing, Orlando (1996).
153. E. Breitmaier and W. Voelter, 13C NMR Spectroscopy (Monographs in Modern Chemistry; Vol. 5), 2nd edition, pp. 67-92, Verlag Chemie, New York (1978).
154. C. J. Pouchert and J. Behnke, The Aldrich Library of 13C and 1H FT NMR Spectra, Vol. 1, 1st edition, p. 814, Aldrich Chemical Company, Inc., U. S. A. (1993).
155. J. D. P. De Jesus, *Hydroxy Acids*, pp. 461-486 in Comprehensive Coordination Chemistry, Vol. 2, Ligands, Edited by Sir G. Wilkinson, R. D. Gillard, and J. A. McCleverty, Pergamon Press, U. S. A. (1987).
156. C. J. Pouchert and J. Behnke, The Aldrich Library of 13C and 1H FT NMR Spectra, Vol. 1, 1st edition, p. 175, Aldrich Chemical Company, Inc., U. S. A. (1993).
157. M. A. Earl, Critical Stability Constants, Vol. 4, Inorganic Complexs, p. 2, Plenum Press, New York (1974).
158. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th edition, rev., pp. 29-62, Mcgraw-Hill, London (1989).
159. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, 2nd edition, pp. 14-95, Saunders College Publishing, Orlando (1996).
160. B. George and P. Mclntyre, Infrared Spectroscopy, pp. 215-220, John Wiley & Sons, London (1987).
161. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, pp. 231-233, John Wiley & Sons, U. S. A. (1986).
162. M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, *Coordination Structures for Uranyl Carboxylate Complexes in Aqueous Solution Studied by IR and 13C NMR Spectra*, J. Phys. Chem., 91, pp. 6128-6136 (1987).
163. B. Velde, Introduction to Clay Minerals; Chemistry, Origins, Uses and Environmental Significance, pp. 18-20, Chapman & Hall, New York (1992).
164. B. Velde, Introduction to Clay Minerals; Chemistry, Origins, Uses and Environmental Significance, p. 86, Chapman & Hall, New York (1992).
165. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, p. 476, John Wiley & Sons, U. S. A. (1986).
166. L. H. Little, A. V. Kiselev, and V. I. Lygin, Infrared Spectra of Adsorbed Species, pp. 47-88, Academic Press, New York (1966).
167. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, p. 103, John Wiley & Sons, U. S. A. (1986).
168. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, p. 138, John Wiley & Sons, U. S. A. (1986).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔