跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江東昇
研究生(外文):Don-Son Jiang
論文名稱:亞共晶鋁-矽(-鎂)合金之共振裂縫傳播行為研究
論文名稱(外文):A Study on the Crack Propagation Behavior of Al-Si (-Mg) Alloys under Resonant Vibration
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-Sheng Lui
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:130
中文關鍵詞:亞共晶共振時效處理滑移帶共晶矽
外文關鍵詞:hypoeutecticresonant vibrationaging conditionslip bandeutectuc silicon
相關次數:
  • 被引用被引用:9
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
亞共晶Al-Si-Mg合金由於應用時可能遭遇共振破壞的問題,因此研究在共振狀態下,亞共晶Al-Si-Mg合金裂縫傳播的機構,及如何由冶金變因提高其裂縫傳播阻抗,是相當重要的課題。
本研究的實驗結果顯示,共振測試過程中,試片末端偏移量的變化情形可分成三區,在第一區時試片有加工硬化的現象,偏移量隨振動次數增加而上升;第二區偏移量幾乎維持一定,而且裂縫主要在此區傳播,然而有少部份試片因裂縫成長速率太快,此區並不明顯;第三區時之裂縫長度已相當長,試片的共振頻率已下降,亦即振動台振動頻率已偏離試片之共振頻率,當振動次數持續增加,偏離程度增加,因此偏移量隨之下降。偏移量由第二區進入第三區所對應的臨界裂縫長度不隨試片不同而改變。
Al-7Si-0.3Mg合金時效處理效應的研究顯示,時效條件可區分成兩組,自然及初時效為一組,而峰值及過時效為另一組。兩組試片的裂縫傳播模式不同,但裂縫傳播阻抗皆會隨合金的降伏強度及微硬度增加而提升。自然及初時效試片中,裂縫在a-Al基地會沿滑移帶傳播,破斷面上出現{111}結晶面特徵,在此種傳播模式下,裂縫轉折程度相當高,可提升裂縫傳播阻抗;裂縫通過共晶矽區間時,沿破裂共晶矽或共晶矽與基地界面傳播。Al-7Si-0.3Mg與無共晶矽存在之Al-1Si-0.3Mg合金的自然時效試片比較顯示,在此種傳播模式下,共晶矽對裂縫傳播影響較小。在峰值及過時效試片中,未觀察到滑移帶傳播的跡象,裂縫傳播受共晶矽影響較大,有往共晶矽區間傳播傾向;而裂縫通過共晶矽區間時,穿過破裂共晶矽或沿共晶矽與基地界面傳播。Al-7Si-0.3Mg與Al-1Si-0.3Mg合金的過時效試片比較顯示,在此種傳播模式中下,共晶矽所扮演角色為劣化傳播阻抗。
Al-7Si-0.3Mg未改良合金鑄態與固溶試片比較顯示,鑄態共晶矽呈針棒狀,對裂縫傳播影響較大,因此裂縫傳播阻抗較固溶試片為低;較長固溶時間可進一步降低共晶矽對裂縫傳播的影響,提升裂縫傳播阻抗。另外固溶處理試片可觀察到裂縫沿滑移帶傳播跡象。從Al-7Si合金探討共晶矽效應的結果顯示,固溶處理可使未改良合金之共晶矽圓鈍化,因此固溶時間愈長,裂縫往共晶矽區間傳播傾向降低,可改善裂縫傳播阻抗;當裂縫經過共晶矽區域,鑄態時是沿破裂共晶矽傳播機率較高,隨固溶時間增加,則沿共晶矽與基地界面比例隨之增加。未改良合金經擠形處理後,共晶矽呈顆粒狀且分佈相當均勻,因此延性相當好,但裂縫路徑的轉折度相當低,裂縫傳播阻抗未有改善效果。經鍶改良處理後,雖鑄態時裂縫路徑的轉折及分歧程度相當高,但裂縫幾乎沿共晶矽區間傳播,因此裂縫傳播阻抗只較未改良合金稍高。改良試片經短時間固溶處理後,則裂縫轉折及分歧程度降低,但裂縫仍有沿共晶矽區間傳播的傾向,因此裂縫傳播阻抗下降。
綜合上述有關亞共晶Al-Si-Mg合金的結果,如在相同強度或微硬度考量下,欲增加其在共振狀態下之裂縫傳播阻抗,則時效處理可選擇人工時效初期,達到兼顧延性及強度的目的。共晶矽的效應方面,則經較長時間固溶處理,或鑄態改良處理皆可改善裂縫傳播阻抗。
During the application of hypoeutectic Al-Si-Mg alloy, resonant vibration may be encountered to accelerate failure. Therefore, the mechanisms of crack propagation of hypoeutectic Al-Si-Mg alloy under resonant vibration and how to improve its cracking resistance by metallurgical factors are necessary to be explored.
The experimental results indicate the deflection in resonance can be classified into three stages as a function of vibration cycle during resonant test. In stage I, the deflection increases with the number of vibration cycles. The hardness of specimen also increases with vibration cycles during this stage. Except for few specimens with faster crack growth rate, the test specimens possess a distinct plateau stage of maximum deflection and the cracks propagate principally in the second stage. As the cracks are sufficiently long, the resonant frequency of the specimen decreases. Therefore, the specimen diverges from the resonance condition. As the crack continues to advance, the degree of divergence increases and the deflection decreases with increasing vibration cycles in stage III. Moreover, the critical crack length for the onset of this final stage is not a function of microstructure change.
In current study, the crack propagation behavior of Al-7Si-0.3Mg alloy with various aging conditions was investigated under resonant vibration. The aging conditions used in this study can be divided into two groups. The natural and under-aging specimens belong to one group and peak and over-aging specimens are the other. Between these two groups, although they exhibit the different mechanisms of crack propagation, their resistances to crack propagation increase with the yield strength and microhardness. In the natural and under-aging conditions, a major part of the crack extends along slip bands as crossing through a-Al matrix and the feature of {111} crystal planes appears in the fracture surfaces. Under this cracking mode, the crack path is meandering, so the cracking resistance increases. In some regions of silicon particles clustering, the crack goes through silicon particle/matrix interfaces or broken particles. Comparing with the natural aging Al-1Si-0.3Mg alloy, which contains no eutectic silicon, the eutectic silicon shows little effect on crack propagation path under the crack extension mode with slip band cracking. However, the feature of slip band cracking is absent in the peak and over-aging specimens. In this group, the eutectic silicon heavily influences the cracking path and the crack shows the more preferred trend toward the zone of silicon particles clustering. As the crack propagates in this zone, the cracking mode is still particle/matrix interface decohesion or through broken particle. From the comparison result between Al-7Si-0.3Mg and Al-1Si-0.3Mg alloys at the over-aging condition, the eutectic silicon can cause the cracking resistance to decrease.
According to the result of the comparison between as-cast and solution-treated unmodified Al-7Si-0.3Mg specimens, the solution treatment can enhance the cracking resistance. Also, the longer solution time can further increase the resistance. Besides the solution-treated specimens affected by natural aging, the level of spheroidization of eutectic silicon increases with postporning the solution time is the other reason. So, Al-7Si alloy possessing no aging behavior is used to investigate the effect of eutectic silicon. The experimental results indicate the solution treatment can alter the morphology of eutectic silicon to more round. While the solution time increases, the level of spheroidization of eutectic silicon increase and the trend of cracking toward the zone of silicon particles clustering decreases. Therefore, the resistance to crack propagation increases. As crossing through the clustering zone, the cracking path of as-cast specimen dominantly goes through broken particles. After the solution treatment, the fraction of interface decohesion increases with solution time. By using the extrusion process for the unmodified alloy, the silicon particles change to particulate type and their distribution becomes more uniform. This feature causes the material to possess the higher elongation. However, its cracking path is smoother, so the extrusion process can not improve the cracking resistance. After the Sr-modification treatment, the effect of crack deflection and branching on the as-cast specimen are higher. However, the crack almost extends through the zone of silicon particle clustering. So, combining these two effects, the cracking resistance of as-cast modified specimen is slightly higher than unmodified one. After short solution time for the modified alloy, the deflection and branching effect on crack path decreases but the preferential trend through the clustering zone still persists. Thus, its cracking resistance is lower than the unmodified alloy.
To sum up the abovementioned results about hypoeutectic Al-Si-Mg alloy, under the consideration of same strength or microhardness, the under-aging condition, which exhibit the higher elongation and strength (microhardness) simultaneously is the better choice in the aging condition during the application necessary for higher cracking resistance under resonant vibration. Among the results of the influence of eutectic silicon, long solution-treating time and Sr-modification in as-cast condition can both improve the cracking resistance.
封面
中文摘要
英文摘要
總目錄
表目錄
圖目錄
第一章 前言
第二章 文獻回顧
2-1 共振狀態介紹
2-1-1 共振頻率
2-1-2 阻泥的影響
2-1-3 共振特性
2-2 A1-Si-Mg合金之等性
2-2-1 A1-Si合金的基本性質與應用
2-2-1 A1-Si合金的時效特性
2-2-2 A1-Si(-Mg)合金的微觀組織
2-2-3 A1-Si(-Mg)合金的變形破壞特性
2-3 裂縫傳播行為
2-3-1 滑移特性對裂縫傳播的影響
2-3-2 裂縫路徑特徵的影響
2-3-3 第二相對裂縫傳播的影響
第三章 實驗方法
3-1 材料熔煉
3-2 共振測試
3-2-1 決定共振頻率
3-2-2 共振測試
3-3 拉伸及硬度測試
3-4 微觀組織定量解析
3-5 裂縫路徑特徵定量解析
第四章 鑄態及固溶處理 A1-7Si-0.3Mg合金振裂縫傳播行為比較
4-1 前言
4-2 實驗材料及方法
4-3 實驗結果
4-3-1 微觀組織及拉伸性質
4-3-2 共振頻率、偏移量與製縫長度
4-3-3 裂縫傳播路徑觀察及解析
4-4 討論
4-4-1 共振測試特性
4-4-2 影響裂縫傳播路徑及阻抗之因素
4-5 結論
第五章 時效處理對A1-7Si-0.3Mg及A1-1Si-0.3Mg合金共振縫傳播行為之影響
5-1 前言
5-2 實驗材料及方法
5-3 實驗結果
5-3-1 顯微組織、拉伸性質及微硬度數據
5-3-2 共振測試特性及裂縫長度數據
5-3-3 裂縫傳播路徑及破斷面解析
5-3-4 裂縫傳播路徑特徵解析
5-4 討論
5-4-1 共振測試特性
5-4-2 裂縫傳播機構
5-4-3 裂縫深度的效應
5-5 結論
第六章 共晶矽形態及佈對A1-7Si合金共振裂縫傳播行為的效應
6-1 前言
6-2 實驗材料及方法
6-3 實驗結果
6-3-1 微觀組織及拉伸性質
6-3-2 共振測試特性
6-3-3 固溶處理試片的共振裂縫傳播行為
6-3-4 擠形處理的效應
6-3-5 改良處理的效應
6-4 討論
6-4-1 固溶處理的效應
6-4-2 擠形處理的效應
6-4-3 改良處理的效應
6-5 結論
第七章 綜合討論
7-1 前言
7-2 與傳統疲勞裂縫傳播的比較
7-3 共振測試特性
7-4 共振裂縫傳播阻抗的提升
第八章 總結論
第九章 參考資料
誌謝
1. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp. 4-160.
2. Metals Handbook, vol. 2, American Society for Metals, Metals Park, Ohio, 1990, 10th ed., pp. 164-165.
3. Aluminum Properties and Physical Metallurgy, edited by J. E. Hatch, Amercian Society for Metals, Metals Park, Ohio, 1984, pp. 265.
4. 鋁合金之組織與性質,日本輕金屬學會四十週年紀念出版部會, 1991, 231-255頁 (in Japanese).
5. M. Tagami and Y. Eerita, "Fracture Toughness of Al-7%Si-0.5%Mg Alloy Castings, J. Japan Inst. of Light Metals", 1980, vol. 30, no. 7, pp. 390-393 (in Japanese).
6. F. S. Lin and E. A. Starke, Jr., "The Effect of Copper Content and Deformation Mode on the Fatigue Crack Propagation of Al-6Zn-2Mg-xCu Alloys at Low Stress Intensities", Mater. Sci. Eng., 1980, vol. 45, pp. 153-165.
7. R. D. Cater, E. W. Lee and E. A. Strake, Jr., "The Effect of Microstructure and Enviroment on Fatigue Crack Closure of 7475 Aluminum Alloy", Metall. Trans. A, 1984, vol. 15A, pp. 555-563.
8. E. Zaiken and R. O. Ritchie, "On the Development of Crack Closure and the Threshold Condition for Short and Long Fatigue Cracks in 7150 Aluminum Alloy", Metall. Trans. A, 1985, vol. 16A, pp. 1467-1477.
9. E. Zaiken and R. O. Ritchie, "Effects of Microstructure on the Fatigue Crack Propagation and Crack Closure Behavior in Aluminum Alloy 7150", Mater. Sci. Eng. 1985, vol. 70, pp. 151-160.
10. K. V. Java and E. A. Starke, Jr., "Fatigue Crack Growth and Fracture Toughness Behavior of an Al-Li-Cu Alloy", Metall. Trans. A, 1986, vol. 17A, pp. 1011-1026.
11. D. M. Jiang, B. D. Hong, T. C. Lei, D. A. Downham and G. W. Lorimer, "Fatigue Fracture Behvior of an Uderaged Al-Mg-Si Alloy", Scripta Metall., 1990, vol. 24, pp. 651-654.
12. G. S. Chen and D. J. Duquette, "The Effect of Aging on the Hydrogen-Assisted Fatigue Cracking of a Precipitation-Hardened Al-Li-Zr Alloy", Metall. Trans. A, 1992, vol. 23A, pp. 1551-1562.
13. D. C. Slavik, C. P. Blankenship, Jr., E. A. Starke, Jr. and R. P. Ganloff, "Intrinsic Fatigue Crack Growth Rates for Al-Li-Cu-Mg Alloys in Vacuum", Metall. Trans. A, 1993, vol. 24A, pp. 1807-1817.
14. D. N. Hanlon and W. M. Rainforth, "Some Observations on Cyclic Deformation Structure in the High-Strength Commercial Aluminum Alloy AA 7050", Metall. Mater.Trans. A, 1998, vol. 29A, pp. 2727-2736.
15. A. K. Vasudevan and S. Suresh, "Microstructural Effects on Quasi-static Fracture Mechanisms in Al-Li Alloys: the Role of Crack Geometry", Mater. Sci. Eng., 1985, vol. 72, pp. 37-49.
16. N. Komatsu, M. Nakamura and Y. Yamamoto, "Relationship Between Si Crystallized Form and Impact Strength of Al-Si Alloys", J. Japan Inst. of Light Metals, 1969, vol. 19, no. 9, pp. 398-408 (in Japanese).
17. M. Tagami and Y. Eerita, "Fracture Toughness of Al-7%Si-0.5%Mg Alloy Castings", J. Japan Inst. of Light Metals, 1980, vol. 30, no. 7, pp. 390-393 (in Japanese).
18. B. Closset and D. Fay, "Strontium Modification of Aluminum Investment Casting Alloys", AFS Trans., 1990, vol. 98, pp. 505-509.
19. S. Shivkumar, S. Gicci, Jr. and D. Apelian, "Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy", AFS Trans., 1990, vol. 98, pp. 913-922.
20. S. Shivkumar, S. Gicci, Jr., C. Keller and D. Apelian, "Effect of Solution Treatment Paramenters on Tensile Properties of Cast Aluminum Alloys", J. Heat Treat., 1990, vol. 8, pp. 63-70.
21. F. T. Lee, J. F. Major and F. H. Samuel, "Effect of Silicon Particles on the Fatigue Crack Growth Characteristics of Al-12 Wt Pct Mg-(0-0.02) Wt Pct Sr Casting Alloys", Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1553-1570.
22. N. Ohnishi, T. Takaai, Y. Nakayama and M. Ohmori, "Effects of Solidification Structure on Fatigue Peoperties of AC4CH Aluminum Casting Alloy Solution Treated at High Temperature", 鑄造工學, 1996, vol. 68, no. 10, pp. 891-897 (in Japanese).
23. S. Kumai, J. Hu, Y. Higo and S. Nunomura, "Effect of Dendrite Cell Size and Particle Distribution on the Near-Threshold Fatigue Crack Growth Behavior of Cast Al-SiCp Composites, Acta Mater., 1996, vol. 44, no. 6, pp. 2249-2257.
24. M. Schaefer and R. A. Fournelle, "Effect of Strontium Modification on Near-Threshold Fatigue Crack Growth in an Al-Si-Cu Die Cast Alloy", Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1293-1302.
25. Z. Wang and R. J. Zhang, "Microscopic Characteristics of Fatigue Crack Propagation in Aluminum Alloy Based Particulate Reinforced Metal Matrix Composites", Acta Metall. Mater., 1994, vol. 42, no. 4, pp. 1433-1445.
26. T. Christman and S. Suresh, "Effects of SiC Reinforcement and Ageing Treatment on Fatigue Crack Growth in an SiC Composite", Mater. Sci. Eng. 1988, vol. A102, pp. 211-216.
27. D. L. Davidson, "Fracture Characteristics of Al-4 Pct Mg Mechanically Alloyed with SiC", Metall. Trans. A, 1987, vol. 18A, pp. 2115-2128.
28. G. M. Vyletel, J. E. Allison and D. C. V. Aken, "The Effect of Matrix Microdtructure on Cyclic Response and Fatigue Behavior of Particle-Reinforced 2219 Aluminum: Part I. Room Temperature Behavior", Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3143-3154.
29. Z. Wang and R. J. Zhang, "Mechanical Behavior of Cast Particulate SiC/Al (A356) Metal Matrix Composites", Metall. Trans. A, 1991, vol. 22A, pp. 1585-1593.
30. An Instroduction to Mechanical Vibration, R. F. Stridel, Jr., John Wiley and Soms, Inc., New York, 1988, 3rd ed., pp. 96-226.
31. 振動與噪音的阻尼控制,孫慶鴻,張啟軍,姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
32. Metals Handbook, vol. 3, American Society for Metals, Metal Park, Ohio, 1990, 10th ed., pp. 52.
33. S. Shivkumar, C. Keller and D. Apelian, "Aging Behavior in Cast Al-Si-Mg Alloys", AFS Trans., 1990, vol. 98, pp. 905-911.
34. M. S. Misra and K. J. Oswalt, "Aging Characteristics of Titanium-Refined A356 Aluminum Castings", AFS Trans., 1982, vol. 80, pp. 1-10.
35. M. Tsukuda, M. Harada, T. Suzuki and S. Koike, "The Effect of Si, Mg, Fe on the Mechanical Properties of Al-Si-Mg Alloys for Casting", J. Japan Inst. of Light Metals, 1977, vol. 28, no. 3, pp. 109-115 (in Japanese).
36. D. L. Zhang and L. Zheng, "The Quench Sensitivity of Cast Al-7Wt Pct Si-0.4 Wt Pct Mg Alloy", Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983-3991.
37. I. Kovacs, J. Lendvai and E. Nagy, "The Mechanism of Clustering in Supersaturated Solid Solutions of Al-Mg2Si Alloys", Acta Metall., 1972, vol. 20, pp. 975-983.
38. S. Ceresara, E. Dirusso, P. Fiorini and A. Giarda, "Effect of Si Excess on the Ageing Behaviour of Ag-Mg2Si 0.8% Alloy", Mater. Sci. Eng., 1969, vol. 5, pp. 220-227.
39. C. W. Meyers, "Solution Heat Treatment Effects in A357 Alloys", AFS Trans, 1985, vol. 93, pp. 741-750.
40. D. Apelian, S. Shivkumar and Sigwirth, "Fundamental Aspects of Heat Treatment of Cast Al-Si-Mg Alloys", AFS Trans., 1989, vol. 97, pp. 727-742.
41. S. Shivkumar, S. Ricci, Jr., B. Steenhoff, D. Apelian and D. Sigworth, "An Experimental Study to Optimize the Heat Tratment of A356 Alloy", AFS Trans., 1989, vol. 97, pp.791-810.
42. The Treatment of Liguid Aluminum-Silicon Alloys, J. E. Gruzleski and B. M. Closset, Amercian Foundryman''s Society, Inc., Des Plaines, Illinois, 1990, pp. 35-55.
43. B. Closset and J. E. Gruzleski, "Structure and Properties of Hypoeutectic Al-Si-Mg Alloys Modified with Pure Strontium", Metall. Trans. A, 1982, vol. 13A, pp. 945-951.
44. S. Z. Lu and A. Hellawell, "Growth Mechanisms of Silicon in Al-Si Alloy", J. Cryst. Growth, 1985, vol. 73, pp. 316-328.
45. M. A. A. Najafabadi, S. Khant, A. Ourdjini and R. Elliott, "The Flake-fibber Transition in Aluminum-Silicon Eutectic Alloys", Cast Metals, 1995, vol. 8, no. 1, pp. 35-42.
46. J. W. Yeh and W. P. Liu, "The Cracking Mechanism of Silicon Particles in an A357 Aluminum Alloy", Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3558-3568.
47. S. Nishi and T. Kobayashi, "A Study on the Toughness of Aluminum Alloys Castings", IMONO, 1974, vol. 46, no. 10, pp. 905-912 (in Japanese).
48. E. Kato and T. Kobayashi, "Effect of Moephology of Silicon on the Fracture Toughness of Unidirectionally Solidified Al-Si System Alloy", J. Japan Inst. of Light Metals, 1979, vol. 30, no. 3, pp. 147-153 (in Japanese).
49. M. M. Haque, "Effects of Strontium on the Structure and Properties of Aluminum-Silicon Alloys", J. Mater. Pro. Technol., 1995, vol. 55, pp. 193-198.
50. M. Ravi, U. T. S. Pillai, B. C. Pai, A. D. Damodaran and E. S. Dwarakadasa, "Mechanical Properties of Cast Al-7Si-0.3Mg (LM 25/356) Alloy", Int. J. Cast Metals Res., 1998, vol. 11, pp. 113-125.
51. B. Closset and J. E. Gruzleski, "Mechanical Properties of A356.0 Alloys Modified with Pure Strontium", AFS Trans., 1982, vol. 90, pp. 453-464.
52. G. K. Sigworth, "Theoretical and Prctical Aspects of the Modification of Al-Si Alloys", AFS Trans., 1983, vol. 91, pp. 7-16.
53. R. C. Voigt and D. R. Bye, "Microstructural Aspects of Fracture in A356", 1991, vol. 99, pp. 33-50.
54. C. H. Caceres, C. J. Davidson and J. R. Griffiths, "The Deformation and Fracture Behavior of an Al-Si-Mg Casting Alloy", Mater. Sci. Eng., 1995, vol. A197, pp. 171-179.
55. T. Kobayashi, M. Minomi and K. Ikeda, "Fatigue Crack Propagation in Al-Si Alloy Castings", J. Japan Inst. of Light Metals, vol. 37, no. 12, pp. 824-830 (in Japanese).
56. C. W. Meyers, "Solution Heat Treatment Effects in A357 Alloys", AFS Trans, 1985, vol. 93, pp. 741-750.
57. S. Ceresara, E. Dirusso, P. Fiorini and A. Giarda, "Effect of Si Excess on the Ageing Behaviour of Ag-Mg2Si 0.8% Alloy", Mater. Sci. Eng., 1969, vol. 5, pp. 220-227.
58. Micromechaniams in Particle-Hardened Alloys, J. W. Martin, Cambridge University Press, 1980,
59. E. Horbogen and K. H. ZumGahr, "Distribution of Plastic Strain in Alloys Containing Small Particles", Metallogrphy, 1975, vol. 8, pp. 181-202.
60. L. Z. Zhung and E. W. Langer, "Observations on the Faceted Fatigue Fracture of Cast Co-Cr-Mo Alloy Used for Surgical Implants", Metall. Trans. A, 1989, vol. 20A, pp. 99-103.
61. R. B. Scarlin, "Fatigue Crack Propagation in a Directionally-Solidified Nickel-Base Alloy", Metall. Trans. A, 1976, vol. 7A, pp. 1535-1541.
62. K. S. Chan, J. E. Hack and G. R. Leverant, "Fatigue Crack Growth in MAR-M200 Single Crystals", Metall. Trans. A, 1987, vol. 18A, pp. 581-591.
63. N. S. Stoff and D. J. Duquette, "Fatigue Mechanisms in Nickel and Cobalt-Base Eutectic Composites", ASTM STP 675, Fatigue Mechanisms, ed. by J. T. Fong, 1978, pp. 788-815.
64. E. Horbogen and K. H. ZumGahr, "Microstructure and Fatigue Crack Growth in a g-Fe-N-Al Alloy", Acta Metall., 1975, vol. 24, pp. 581-592.
65. J. Lindigkeit, G. Terlinde, A. Gysler and G. Lutjering, "The Effect of Grain Size on the Fatigue Crack Propagation Behavior of Aged-Hardened Alloys in Inert and Corrosive Environment", Acta Metall. 1979, vol. 27, pp. 1717-1726.
66. B. L. Jo, D. S. Park and S. W. Nam, "Effect of Mn Dispersoid on the Fatigue Crack Propagation of Al-Zn-Mg Alloys", Metall. Mater. Trans. A, 1996, vol. 27A, pp. 490-493.
67. L. Edwards, A. K. Busby and J. W. Martin, "Effect of Aging and Dispersoid Content on Fatigue Crack Growth on Fatigue Crack Growth in Al-Mg-Si Alloys", Mater. Sci. Technol. 1986, vol. 2, no. 8, pp. 823-828.
68. Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp. 71-91.
69. Fatigue of Materials, S. Suresh, Cambridge University Press, New York, 1991, pp. 292.
70. Elementary Engineering Fracture Mechanics, D. Broek, Martinus Nijhoff Publishers, 1984, pp. 158-163.
71. S. Suresh, "Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks", Metall. Trans. A, 1983, vol. 14A, pp. 2375-2385.
72. W. Elber, Eng. Fract. Mech.,"Fatigue-Crack Closure under Cyclic Tension", 1971, vol. 2, pp. 37-45.
73. S. Suresh and R. O. Ritchie, "A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness", Metall. Trans. A, 1982, vol. 13A, pp. 1627-1631.
74. S. H. Wang, C. Muller and H. E. Exner, "A Model for Roughness-Induced Fatigue Crack Closure", Metall. Mater. Trans A, 1998, vol. 29A, pp. 1933-1939.
75. S. Suresh, R. O. Ritchie, "Mechanistic Dissimilarities Between Enviromentally Influenced Fatigue-Crack Propagation at Near-Threshold and Higher Gowth Rates in Lower Strength Steels", Metal Sci., 1982, vol. 16, pp. 529-538.
76. S. Suresh, "Fatigue Crack Defelction and Fracture Surface Contat: Micromechanical Models", Metall. Trans. A, 1985, vol. 16A, pp. 249-260.
77. R. O. Ritchie, "Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding", Mater. Sci. Eng., 1988, vol. A103, pp. 15-28.
78. W. J. Drury, A. M. Gokhale and S. D. Antolovich, "Effect of Crack Surface Geometry on Fatigue Crack Closure", Metall. Trans. A, 1995, vol. 26A, pp. 2651-2663.
79. A. J. Padkin, M. F. Brereton and W. J. Plumbridge, "Fatigue Crack Growth in Two-Phase Alloys", Mater. Sci. Technol., 1987, vol. 3, pp. 217-223.
80. D. M. Knowles and J. E. King, "Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propagation in Particulate SiC Reinforced Aluminum Alloy 8090", Mater. Sci. Technol., 1992, vol. 8, pp. 500-509.
81. C. Masuda and Y. Tanaka, "Fatigue Properties and Fatigue Fracture Mechanisms of SiC Wiskers or SiC Particlate-Reinforced Aluminum Composites", J. Mater. Sci., 1992, vol. 27, pp. 413-422.
82. S. Kumai, J. E. King and J. F. Knott, "Fatigue in SiC-Particulate-Reinforced Aluminum Alloy Composites", Mater. Sci. Eng., 1991, vol. A146, pp. 317-326.
83. J. J. Mason and R. O. Ritchie, "Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites", Mater. Sci. Eng., 1997, vol. A231, pp. 170-187.
84. Y. Sugimura and S. Suresh, "Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced with SiC Particles", Metall. Trans. A, 1992, vol. 23A, pp. 2231-2242.
85. J. N. Hall, J. W. Jones and A. K. Sachdev, "Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 Aluminum-SiCp Composites", Mater. Sci. Eng., 1994, vol. A183, pp. 69-80.
86. N. Chawla, C. Andres, J. W. Jones and J. E. Allison, "Effect of SiC Volume Fraction and Particle Size on the Fatigue Resistance of a 2080 Al/SiCp Composite", Metall. Mater.Trans. A, 1998, vol. 29A, pp. 2843-2854.
87. J. K. Shang and R. O. Ritchie, "On the Particulate-Size Dependence of Fatigue-Crack Propagation Thresholds in SiC-Particulate-Reinforced Aluminum-Alloy Composites: Role of Crack Closure and Crack Trapping", Acta Metall., 1989, vol. 37, no. 8, pp. 2267-2278.
88. J. K. Shang, W. Yu and R. O. Ritchie, "Role of Silicon Carbide Particles in Fatigue Crack Growth in SiC-Particlate-Reinforced Aluminum Alloy Composites", Mater. Sci. Eng., 1988, vol. A102, pp. 181-192.
89. D. M. Knowles and J. E. King, "Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propagation in Particulate SiC Reinforced Aluminum Alloy 8090", Mater. Sci. Technol., 1992, vol. 8, pp. 500-509.
90. O. Botstein, R. Arone and B. Shpigler, "Fatigue Crack Growth Mechanisms in Al-SiC Particulate Metal Matrix Composites", Mater. Sci. Eng., 1990, vol. A128, pp. 15-22.
91. P. Y. Zhu, Q. Y. Liu and T. X. Hou, Spheroidization of Eutectic Silicon in Al-Si Alloys, AFS Trans., 1985, vol. 93, pp. 609-614.
92. S. M. McGuire, M. E. Fine and J. D. Achenbach, "Nondestructive detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity", J. Mater. Res., 1993, vol. 8, pp. 2216-2223.
93. S. M. McGuire, M. E. Fine and J. D. Achenbach, "Crack Detection by Resonant Frequency Mearsurements", Metall. Trans. A, 1995, vol. 26A, pp. 1123-1127.
94. N. Ranganathan and P. Mazot, "Changes of Elastic Constants Associated with Fatigue Damage in an Aluminum Alloy", Mater. Sci. Eng., 1991, vol. A147, pp. 161-166.
95. W. H. Hunt, Jr., J. R. Brockenbrough and P. E. Magnusen, "An Al-Si-Mg Composite Model System: Microstructural Effects on Deformation andDamage Evolution", Scripta Metall. Mater., 1991, vol. 25, pp. 15-20.
96. C. Y. Tang, M. Jie, W. Shen and K. C. Yung, "The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage", Scripta Metall. Mater., 1998, vol. 38, no. 2, pp. 221-238.
97. G. T. Hahn and A. R. Rosenfield, "Metallurgical Factors Affecting Fracture Toughness of Aluminum Alloys", Metall. Trans. A, 1975, vol. 6A, pp.653-669.
98. J. G. Byrne, M. E. Fine and A. Kelly, Phil. Mag., 1961, vol.6, pp. 1119.
99. D. Dew-Hughes and W. D. Robertson, "Dispersed Paricle Hardening of Aluminum-Copper Alloy Single Crystals", Acta Metall., 1960, vol. 8, pp. 147-155.
100. R. J. Price and A. Kelly, "The Plastic Deformation of Age-Hardened Aluminum Alloys", Acta Metall., 1962, vol. 10, pp. 980-992.
101. Precipitation Hardening, J. W. Martin, Pergamon Press Ltd., London, 1968, 1st ed., pp. 115-119.
102. C. Q. Bowles and D. Broek, "On the Formation of Fatigue Striations", Int. J. Fract. Mech., 1972, vol. 8, No. 1, pp. 75-85.
103. R. M. N. Pelloux, "Mechanisms of Formation of Ductile Fatigue Striations", ASM Trans. Quart, 1969, vol. 62, pp. 281-285.
104. I. Sinclair and P. J. Gregson, "Mixed Mode Fatigue Crack Growth in the Commercial Al-Li Alloy", Scripta Metall. Mater., 1994, vol. 30, no. 10, pp. 1287-1292.
105. C. Laird, "Fatigue and Microstructure", American Society for Metals, Metals Park, Ohio, 1978, pp. 183-194.
106. I. W. Hussey, J. Byrne and W. Locke, "Short Fatigue Cracks", K. J. Miller and E. R. de los Rios eds., European Structural Integrity Society, 1992, pp. 305-318.
107. Z. Chen, A. Zeghloul and J. Pett, "Fatigue Threshold and Near-Threshold Propagation of Short Through Cracks in an Aluminum-Lithium Alloy 8090", Scripta Metall., 1989, vol. 23, pp. 1005-1010.
108. F. Paray and J. E. Gruzleski, "Effect of Modification on Aluminum Matrix of Al-Si-Mg Alloys", Mater. Sci. Technol., 1994, vol. 10, pp. 757-761.
109. M. H. Mulazimoglu, A. Zaluska, F. Paray and J. E. Gruzleski, "The Effect of Strontium on the Mg2Si Precipitation Process in 6201 Aluminum Alloy", Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1289-1295.
110. A. G. Evans, M. Ruhle and M. Turwitt, "On the Mechanics of Failure in Ceramic-Metal Bonded Systems", J. Phys., 1985, vol. 46, pp. 613-626.
111. E. J. Lavernia, R. J. Perez and J. Zhang, "Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites", Metall. Mater. Trans. A, 1995, 26A, pp. 2803-2818.
112. J. Zhang, R. J. Perez, M. Gupta and E. J. Lavernia, "Damping Behavior of Particulate Reinforced 2519 Al Metal Matrix Composites", Scripta Metall. Mater., 1993, vol. 28, pp. 91-96.
113. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, "Damping Behavior of 6061Al/Gr Metal Matrix Composites", Metall. Trans. A, 1993, vol. 24A, pp. 701-712.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 44.陳慈暉(1997),「和喬科技以實力挺過寒冬、建邦創投公司囑目的明日之星」,能力雜誌,第502期,1997年 12月號,頁40-42。
2. 62.廖志德(1997),「台灣-亞太高科技創業投資的新星」,能力雜誌,第502期,1997年12月號,頁16-22。
3. 59.萬明榮(1997),「高科技產業發展的關鍵推手-高科技財務機制」,能力雜誌,第502期,1997年12月號,頁 54-55。
4. 32.梁玲菁(1997),「臺灣創業投資事業及其投資決策過程」,產業金融季刊,民86年12月,頁15-35。
5. 30.范明玲(1997),「過去、現在、未來三部曲-2000年的創業投資事業」,會計研究月刊,民86年1月,頁 37-42 。
6. 43.陳昱欣(1997),「企業天使心-引導個人投資者進入創業投資」,能力雜誌,第502期,1997年12月號,頁31 。
7. 60.楊金財(1996),「日本創業投資發展概況」,中國商銀月刊,民85年4月,頁25-35。
8. 31.范明玲(1997),「臺灣創投業的天空-攸關創投業未來的政策走向」,會計研究月刊,民86年1月,頁31-36 。
9. 41.陳春山(1998),「投資銀行創業投資業務之法制規則」,證券公會,民87年月,頁1-29。
10. 23.承立平(1997),「建構台灣高科技產業的發展環境」,經濟前瞻,民86年9月5日,頁88-91。
11. 26.杜英儀(1998),「台灣創投事業發展之檢討」,經濟前瞻,民87年9月5日,頁74-77。
12. 24.李世良(1998),「中、台、美創投大合作」,商業周刊,民87年10月26日,頁80-82。
13. 22.何建曉(1996),「荷蘭的金融體系及創業投資事業」,產業金融季刊,民85年6月,頁25-38。
14. 35.徐自強(1996),「創業投資業的發展」,中國商銀月刊,民85年9月,頁32-39。
15. 20.林秀蓮(1993),「美國創業投資事業概況」,產業金融季刊,民82年9月,頁41-45。