(3.239.33.139) 您好!臺灣時間:2021/03/07 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃健生
研究生(外文):C. S. Huang
論文名稱:以超音波噴霧裂解法沉積高介電介質薄膜及其特性研究
論文名稱(外文):Preparation and Characterization of High Dielectric Thin Films by Using Ultrasonic Nebulized Spray Pyrolysis
指導教授:李中夏李中夏引用關係陳貞夙陳貞夙引用關係
指導教授(外文):C. H. LeeJ. S. Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:超音波噴霧裂解鈣鈦礦相鐵電相順電相鋯鈦酸鉛鈦酸鉛鑭
外文關鍵詞:ultrasonic nebulized spray pyrolysisperovskite phaseferroelectricparaelectricPZTPLT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用超音波噴霧裂解法於裸矽及Pt底電極上沉積PZT與PLT薄膜。超音波頻率為1.63MHz,反應壓力固定在70 torr。即使是固體原料,亦可經由適當的溶劑處理後,當做反應物使用,因此本製程較其它CVD法簡單,在原料的選擇上更具多樣化。
本實驗使用Pb(CH3COO)2‧3H2O, Zr(n-C3H7O)4及Ti(i-C3H7O)4做為反應物於N型Si(100)基板上沉積PZT薄膜。實驗顯示,薄膜中的Pb含量對於PZT鈣鈦礦相的形成扮演非常重要的角色,而Pb的含量主要是受到沉積溫度的影響,由ESCA成份分析可看出,在600℃以上由於PbO易揮發,造成沉積膜中Pb含量嚴重缺乏。介電常數最初隨著沉積溫度上升而增加,並達一最大值約160,當沉積溫度進一步升高時,由於Pb含量嚴重缺乏,使得鈣鈦礦相不完全,因而介電常數下降。另外,由於結晶相隨沉積溫度而改變,因此C-V遲滯曲線的方向亦不同,例如550℃沉積之薄膜因具有鐵電材料的殘留極化特性,使得其C-V遲滯曲線為逆時針方向,而於630℃沉積之薄膜為一般的介電膜,因此其C-V遲滯曲線顯示出順時針方向。在沉積溫度較低時,隨著溫度的上升由於結晶性變好,因而薄膜的漏電流降低,但當溫度超過600℃時,由於Pb的揮發使得薄膜緻密性變差,漏電流反而變大。於550℃所沉積之薄膜有最低的漏電流,在5×105V/cm外加電場下其值約為2×10-8A/cm2。
在PLT薄膜方面,由於醋酸鑭效果不好,因此本實驗使用Pb(CH3COO)2‧3H2O, La(NO3)3‧6H2O及Ti(i-C3H7O)4做為反應物,並分別沉積在N型Si(100)及Pt/TiO2/Ti/SiO2/(100)Si兩種基板上。實驗結果顯示,隨著La含量的增加薄膜由正方晶結構轉變為接近立方晶之結構。折射率與晶粒大小隨著La含量的增加而下降。在電性測試方面,將試片製成Al/PLT/n-Si (MIS) 及 Pt/PLT/Pt/TiO2/Ti/SiO2/n-Si (MIM)兩種結構,做C-V、I-V和P-E量測,測試結果發現,介電常數隨La含量增加而上升,MIS及MIM結構之最大值分別為275及530;MIS結構之漏電流高於MIM結構;由於正方性(c/a)隨著La含量的增加而降低,使得P-E遲滯曲線變的較狹窄,當膜中La含量高於20mol%時,薄膜之介電行為就如一般的介電材料不具鐵電性。
Ultrasonic nebulized spray pyrolysis is employed in this study to deposit PZT and PLT thin films on n-type Si and Pt/TiO2/Ti/SiO2/(100)Si substrates. The ultrasonic frequency is 1.63 MHz. The reaction pressure is fixed at 70 torr. Since the solid sources can be easily used as reactants with proper solvents, this method is simpler and more versatile than other CVD processes.
PZT thin films are deposited on n-type (100) Si substrates using Pb(CH3COO)2‧3H2O, Zr(n-C3H7O)4 and Ti(i-C3H7O)4 as reactants. Experimental results reveal that lead content in the thin films plays an important role in the formation of the perovskite phase of PZT, and it is strongly dependent on deposition temperature. Composition measurements by ESCA indicate that lead content is seriously deficient from stoichiometry for depositions at temperatures above 600℃ because of high vapor pressure of PbO . The permittivities are found to increase with the deposition temperature to a maximum value of about 160 and then decrease with further increase of temperature because of the decrease of PbO incorporation resulting in gradual phase change from perovskite to pyrochlore. In addition, because of the temperature dependence of phase change, the counter clockwise direction of C-V hysteresis of the films grown at 550℃ due to remanent polarization is opposite to that of the sample prepared at 630℃. The leakage currents of the samples are found to decrease with the increase of growth temperature in the lower temperature range because of crystallinity improvement, and they deteriorate for the samples grown at temperatures above 600℃. The sample with lowest leakage current of 2×10-8 Amp/cm2 at 5×105 V /cm is grown at 550℃.
In this work, Films of lead lanthanum titanate (PLT) are deposited on n-type (100) Si and Pt/TiO2/Ti/SiO2/(100)Si substrates. Pb(CH3COO)2‧3H2O, La(NO3)3‧6H2O, Ti(i-C3H7O)4 are used as reactants. Experimental results reveal that the films are transformed from tetragonal to nearly cubic as the lanthanum content increases. The refractive index and grain size decrease with the increase of La content in the films. From C-V and I-V measurements of the Al/PLT/n-Si (MIS) and Pt/PLT/Pt/TiO2/Ti/SiO2/n-Si (MIM) structures, the dielectric properties are determined. The permittivities are found to increase with the La content to a maximum value of about 275 and 530 for the MIS and MIM structures, respectively, and then decrease with further increase of La content for the films grown at 550℃. The results of I-V measurements indicate that the leakage currents of the MIS structure are higher than MIM structure. The P-E hysteresis loop became slimmer with the increase of La concentration due to lower tetragonality (c/a), and when the La content is higher than 20 mol%, the films behave like a normal dielectric.
封面
中文摘要
英文摘要
誌謝
目錄
表目錄
照片目錄
圖目錄
第一章 緒論
1.1 前言
1.2 研究緣起與目的
第二章 理論基礎
2.1 介面理論
2.2 晶體結構
2.2.1 鋯鈦酸鉛(PZT)的基本結構
2.2.2 鈦酸鉛鑭(PLT)的基本結構
2.3 高介電介質薄膜在DRAM上的應用
2.3.1 DRAMs工作原理
2.3.2 DRAM 用電容器材料的必要條件
2.4 噴霧裂解法的基理論
2.5 薄膜沉積原理
2.5.1 熱力學分析
2.5.2 動力學分析
第三章 實驗步驟及方法
3.1 實驗流程
3.2 實驗系統
3.3 實驗材料
3.3.1 沉積PZT薄膜之實驗材料
3.3.2 沉積PLT薄膜之實驗材料
3.4 溶液的配製
3.4.1 沉積PZT 薄膜之溶液配製
3.4.2 沉積PLT 薄膜之溶液配製
3.5 實驗步驟
3.5.1 準備工作
3.5.2 基板清洗步驟
3.5.3 設定實驗參數
3.5.4 沉積步驟
3.6 薄膜性質測試
3.6.1 薄膜厚度與折射率
3.6.2 X光繞射分析
3.6.3 穿透式電子顯微鏡(TEM)分析
3.6.4 掃描式電子顯微鏡(SEM)分析
3.6.5 成份分析
3.6.6 電性測試
第四章 PZT薄膜之製作及其特性研究
4.1 結果與討論
4.1.1 成長速率分析
4.1.2 成份分析
4.1.3 折射率
4.1.4 X-ray繞射分析
4.1.5 SEM 分析
4.1.6 TEM 分析
4.1.7 電性分析
4.2 結論
第五章 PLT 薄膜之製作及其特性研究(I)
5.1 結果與討論
5.1.1 成長速率分析
5.1.2 成份分析
5.1.3 折射率
5.1.4 X-ray 繞射分析
5.1.5 SEM 分析
5.1.6 電性分析
5.2 結論
第六章 PLT 薄膜之製作及其特性研究(II)
6.1 結果與討論
6.1.1 成長速率分析
6.1.2 成份分析
6.1.3 X-ray 繞射分析
6.1.4 SEM 分析
6.1.5 折射率分析
6.1.6 電性分析
6.2 結論
第七章 參考文獻
1. C. Feldman, Rev. Sci. Instr., 26, 463 (1955).
2. R. A. Roy, K. F. Etzold and J. J. Cuomo, Mat.Res.Soc.Symp. Proc. 200, 141 (1990).
3. T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato and M. Nunoshita, Jpn. J. Appl. Phys., 32, 4126 (1993).
4. L. H. Parker and A. F. Tasch, IEEE Circuit and Devices Mag., pp.17, Jan. 1990.
5. A. F. Tasch and L. H. Parker, Proc. IEEE, 77, 374 (1989).
6. C. W. Ho, D. A. Chance, C. H. Bajorek and R. E. Acosta, IBM J. Res. Develop., 26, 286 (1982).
7. D. A. Chance, C.W. Ho, C. H. Bajorek and M. Sampogna, IEEE Trans. Comp. Hybrids, Manuf. Technol., CHMT-5, 368 (1982).
8. D. Bondurant, Ferroelectrics, 112, 273 (1990).
9. S. K. Dey and R. Zuleeg, Ferroelectrics, 108, 37 (1990).
10. S. K. Dey and R. Zuleeg, Ferroelectrics, 112, 309 (1990).
11. J. M. Benedetto, R. A. Moore, F. B. Mclean, P. S. Brody and S. K. Dey, IEEE Trans. Nucl. Sci., 37, 1713 (1990).
12. M. Kojima, M. Sunagawa, H. Seto, Y. Matsui, M. Okuyama and Y. Hamakawa, in Proceeding of the 2nd Sensor Symposium, edited by Technical committee on Electron Device (the Institute of Electrical Engineers of Japan, Tokyo,1982) p.241.
13. K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi and K. Setsune, IEEE J. Lightwave Tech., LT-2, 710 (1984).
14. M. Okuyama and Y. Hamakawa, Ferroelectrics, 63, 243 (1985).
15. L. M. Sheppard, Ceram. Bull. 71. 85 (1992).
16. R. Takayama, Y. Tomita, K. Iijima and I. Ueda, J. Appl. Phys., 63, 5868 (1988).
17. B.Eitan and D. F. Bentchkowsky, IEEE Trans. Electron Devices, 29, 254 (1982).
18. Takashi Hase and Tadashi Shiosaki, J. Appl. Phys., 30, 2159 (1991).
19. H. Hu, C. J. Pen and S. B. Krupnidhi, Thin Solid Films, 223, 327 (1993).
20. S. B. Krupnidhi, N. Maffei, M. Sayer and K. El-Assal, J. Appl. Phys., 54, 6601 (1983).
21. T. S. Kim, D. J. Kim, J. K. Lee and H. J. Jung, Mat. Res. Soc. Symp. Proc., 433, 243 (1996).
22. C. E. Murphy, H. Hata and K. Tsutsumi, Mat. Res. Soc. Symp. Proc., 433, 389 (1996).
23. B. Ea-Kim, F. Varniere, M. C. Hugon and B. Agius, Mat. Res. Soc. Symp. Proc., 433, 163 (1996).
24. M. A. Kinaga, H. Fukuda, H. Ohkubo, T. Fvkami and T. Aomine, Jpn. J. Appl. Phys., 31, 2978 (1992).
25. K. Iijima, Y. Tomita, R. Takayama and L. Ueda, J. Appl. Phys., 60, 361 (1986).
26. R. Takayama and Y. Tomita, J. Appl. Phys., 65, 1666 (1989).
27. K. Kushida and H. Takeuchi, Ferroelectrics, 108, 1609 (1990).
28. K. Iijima, L. Ueda and K. Kugimiya, Jpn. J. Appl. Phys. Lett., 63, 2570 (1993).
29. Masaru Oikawa and Kohji Toda, Appl. Phys. Lett., Vol 29, No.8 (1976) 491.
30. H. Hu and S. B. Krupnidhi, Appl. Phys. Lett., 61, 1246 (1992).
31. L.E.Sanchez, D.T.Dion, S.Y.Wu and I.K.Naik, Ferroelectrics, 116, 1 (1991).
32. Sandwidk Dey and Rainer Zulleeg, Ferroelectrics, 108, 37 (1990).
33. C. J. Chen, E. T. Wu, Y. H. Xu, K. C. Chen and J. D. Mackenzie, Ferroelectrics,
112, 321 (1990).
34. Guanghua Yi, Z. Wu and Michael Sayer, J. Appl. Phys., 64(5), 1 (1988).
35. G. Teowee, C. D. Baertlein, S. Motakef, E. L. Quackenbush, J. M. Boulton and D. R. Uhlmann, Integrated Ferroelectrics, 11, 47 (1995).
36. S. J. Kang, J. S. Ryoo and Y. S. Yoon, Mat. Res. Soc. Symp. Proc., 361, 281 (1995).
37. S. J. Lee, M. S. Jang, C. R. Cho, K. Y. Kang and S. K. Han, Jpn. J. Appl. Phys.,
34, 6133 (1995).
38. J.S.Horwitz, K.S.Grabowski, D.B.Chrisey and R.E.Leuchter, Appl. Phys. Lett., 59 (1991) 23.
39. D.Roy, D.B.Krupanidhi and J.P.Dougherty, J. Appl. Phys., 69 (1991) 7930.
40. Tadayuki Imai, Masanori Okuyama and Yoshiniro Hamakawa, Appl. Phys. Lett.,
30 (1991) 2163.
41. Hideo Kideoh, Toshio Ogawa, Akiharu Morimoto and Tatsuo Shimizu, Appl. Phys. Lett., 58 (1991) 2910.
42. R.Ramesh, A.Inam, B.Wilkeus, W.K.Chan, T.Sands and J.Bullington, Appl. Phys.
Lett., 59 (1991) 1782.
43. S.Mechizuki, S.Kimura and R.Ma Kabe, Jpn. J. Phys. Lett., 28, Suppl 28-2, 15 (1989).
44. Y. Sakashita, T. Ono and H. Segawa, J. Appl. Phys., 69(12), 15 (1991).
45. M. Okada, S. Takai, M. Amemiya and K. Tominaga, Jpn. J. Appl. Phys. Lett., 28,
1030 (1989).
46. Z. C. Feng, B. S. Kwak and A. Erbil, Mat. Res. Soc. Symp. Proc., 361, 331 (1995).
47. D. B. Beach and C. E. Vallet, Mat. Res. Soc. Symp. Proc., 415, 225 (1996).
48. Y.Wang, P.Zhang, B.Qu and W.Zhong, J. Appl. Phys., 71(12), 6121 (1992).
49. W. Ren, Y. Liu, J. Qiu, L. Y. Zhang and X. Yao, Ferroelectrics, 152, 201 (1994).
50. J. Dieleman, E. van de Riet and J. C. S. Kools, Jpn. J. Appl. Phys., 31, 1964 (1992).
51. K. Sreenivas, I. Reaney, T. Maeder and N. Setter, J. Appl. Phys., 75, 232 (1994).
52. T. Fukami, I. Minemura, Y. Hiroshima and T. Osada, Jpn. J. Appl. Phys., 30, 2152 (1991).
53. J. O. Olowolafe et al., Mater. Res. Soc. Symp. Proc., 243, 355 (1991).
54. R. Retorius, J. M. Harrosand and M. A. Nicolet, Solid State Electronics, 21, 667 (1978).
55. C. Y. Ting, M. Witter, S. S. Lyer and S. B. Brodsky, J. Electrochem. Soc., 31, 2934 (1984).
56. M. A. Taubenblate and C. R. Helms, J. Appl. Phys., 53, 608 (1982).
57. K. Abe, H. Tomita, H. Toyoda, M. Iami and Y. Yokote, Japn. J. Appl. Phys., 30, 2152 (1991).
58. T. Hase et al., Japn. J. Appl. Phys., 32, 4061 (1993).
59. T. C. Tisone and J. Drobeck, J. Vac. Sci. and Techn., 9, 271 (1971).
60. J. O. Olowolafe, R. E. Joes, A. C. Campbell, R. I. Hegde, C. J. Mogab and R. B. Gregory, J. Appl. Phys., 73, 1764 (1993).
61. G. A. M. Spierings, J. B. A. Vanzon, M. Klee and P. Larsen, in Proc. of the 4th International Symp. on Integrated Ferroelectrics, Monterey, CA, 1992.
62. R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer and W. Hoester, , Mater. Res. Soc. Symp. Proc., 243, 123 (1991).
63. L. A. Bursill, I. M. Reaney, D. P. Vijay and S. B. Desu, J. Appl. Phys., 75, 1521 (1994).
64. R. A. Roy and K. F. Etzold, J. Mater. Res., 7, 1455 (1992).
65. S. B. Bernstein, T. Y. Wong, Y. Kisler and R. W. Tustion, J. Mater. Res., 8, 12 (1992).
66. R. Ramesh, T. Sands, V. G. Keramidas and D. K. Fork, (Mater. Res. Soc. Pittsburgh, PA, 1993) P.195.
67. C. B. Eom et al., Mat. Res. Soc. Symp. Proc., 310, 145 (1993).
68. R. Ramesh et al., Appl. Phys. Lett., 61, 1537 (1992).
69. S. L. Swartz, T. R. Shrout, W. A. Schulze and L. E. Cross, J. Am. Ceram. Soc., 67, 311 (1984).
70. H. T. Martirena and J. C. Burfoot, J. Phys. C : Solid State Phys., 7, 3182 (1974).
71. A. Amin, R. E. Newnham, L. E. Cross, S. Nomura and D. E. Cox, J. Solid Chemistry, 35, 267 (1980).
72. 莊達人,“VLSI製造技術”,高立書局,p136 (1995).
73. C. Sudhama, J. C. Carrano, L. H. Parker, V. Chikarmane, J. C. Lee, A. F. Tasch, W. Miller, N. Abt and W. H. Shepherd, Mat. Res. Soc. Symp. Proc., 200, 331 (1990).
74. R. Moazzami, C. Hu and W. H. Shepherd, IEEE Electron Device Lett., 11, 454 (1990).
75. 彭成鑑,工業材料,107, 72 (1995).
76. J. Kawahara, M. Yamanuka, T. Makita and J. Naka, Jpn. J. Appl. Phys., 33, 5129 (1994).
77. K. Dupre, K. Recker and F. Wallrafen, Mat. Res. Bull., 27, 303 (1992).
78. J. C. Viguie and J. Spitz, J. Electrochem. Soc., 122, 585 (1975).
79. G. Blandenet, M. Court and Y. Lagearde, Thin Solid Films, 77, 81 (1981).
80. L. Eckertove and T. Ruzicka, Diagnostics and Applications of thin films, Institute of Physics Publishing, Ch. 1 & 2, (1993).
81. C. H. J. van der Rekel, Phillips, Res. Report, 32, 118 (1977).
82. G. Wahl et. al., Thin Solid Films, 40, 13 (1977).
83. N. Shibata and S. Zembutsu, Jpn. J. Appl. Phys. Lett., 32, 119 (1977).
84. K. Inoue, M. Okuyama and Y. Hamakawa, Appl. Surj. Sci., 41/42, 407 (1989).
85. T. Inyshiuma, N. Hiirose, K. Ito and S. Yamazaki, Appl. Phys. A, 47, 229 (1988).
86. J. Korec and M. Heyen, J. Crystal Growth, 60, 286 (1982).
87. J. O. Carlsson, Thin Solid Films, 130, 261 (1985).
88. W. A. Bryant, J. Mater. Sci., 12, 1258 (1977).
89. J. M. Blocher and J. R., Thin Solid Films, 77, 51 (1981).
90. J. M. Blocher, J. Vac. Technol., 11, 680 (1974).
91. K. D. Budd, S. K. Dey and D. A. Payne, Br. Ceram. Proc., 36, 107 (1985).
92. R. Bruchhaus, Ferroelectrics, 133, 73 (1992).
93. T. R. Shrout and A. Halliyal, Amer. Ceram. Soc. Bull., 66, 704 (1987).
94. J. M. Longo, P. M. Raccah and J. B. Goodnough, Mater. Res. Bull., 4, 191 (1969).
95. A. W. Sleight, Mater. Res. Bull., 4, 377 (1969).
96. S. M. Sze, “ Semicondoctor Devices Physics and Technology”, Chap. 5, (1985).
97. S. M. Sze, “Physics of Semicondoctor Devices”, 2nd ed, Chap. 5, (1981).
98. B. E. Deal, IEEE. Trans. Electron Devices, ED-27, 606 (1980).
99. S. M. Sze, “Physics of Semicondoctor Devices”, 2nd ed, Chap. 7, (1981).
100. A. Mansingh, K. Sreenivas and T. Sudersena Rao, Proc. of 6th IEEE Intl. Symp. Appl. Ferroelectric, 576 (1986), Edited by V. E. Wood New York.
101. Salama, C. T. and Siciunas E., J. Vac. Sci. Technol., 9, 91 (1972).
102. C. B. Sawyer and C. H. Tower, Physical. Review. 35, 269 (1993).
103. G. H. Haertling, Am. Ceram. Soc. Bull. 43, 875 (1964).
104. Y. Sakashita, T. Ono, H. Segawa K. Tominaga and M. Okada, J. Appl. Phys., 69
8352 (1991).
105. H. Igarashi, K. Matsunaga, T. Taniai and K. Okazaki, Am. Ceram. Soc. Bull. 57,
815 (1978).
106. F. Kulcsar, J. Am. Ceram. Soc., 42(7), 343 (1959).
107. R. Gerson and H. Jaffe, J. Phys. Chem. Solids, 24, 979 (1963).
108. I. Mayer and F. Kassierer, J.Inorg. Nucl. Chem., 28, 2430 (1966).
109. T. Yamamoto, H. Igarashi and K. Okazaki, J. Amer. Ceram. Soc., 66, 363 (1983).
110. K. Iijima et al, J. Appl. Phys., 60, 2914 (1986).
111. W. Ren, Y. Liu, J. H. Qiu, L. Y. Zhang and X. Yao, Ferroelectrics, 152, 201 (1994).
112. D. Henning and K. H. Hardtl, Phys. Status Solidi (a), 3, 465 (1970).
113. K. H. Hardtl, Ferroelectrics, 12, 9 (1976).
114. R. Moazzami, C. Hu and W. H. Shepherd, IEEE Transactions on Electron Devices, 39, 2044 (1992).
115. N. Uchida and T. Ikeda, Jpn. J. Appl. Phys., 4, 867 (1965).
116. N. Uchida and T. Ikeda, Jpn. J. Appl. Phys., 6, 1079 (1965).
117. Y. Fujii and T. Sakudo, J. Phys. Soc. Jpn., 41, 888 (1976).
118. S. Rober, Phys. Rev., 71, 890 (1947).
119. Y. Sakashita, T. Ono, H. Segawa, K. Tominaga and M. Okada, J. Appl. Phys., 69, 8352 (1991).
120. Y. Sakashita, T. Ono, H. Segawa, K. Tominaga and M. Okada, Ferroelectrics, 133, 79 (1992).
121. H. K. Pulker and J. Maser, Thin Solid Films, 59, 65 (1979).
122. G. A. Rossetti, L. E. Cross and K. Kushida, Appl. Phys. Lett., 59, 2524 (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔