跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡映麟
研究生(外文):Ying ling Tsai
論文名稱:熔融還原煉鐵製程中氣體底吹現象之數學模擬研究
論文名稱(外文):Mathematical Modeling of the Fluid Flow Phenomena Induced by Bottom Gas Injection in an Iron Smelting Reduction Furnace
指導教授:黃文星黃文星引用關係
指導教授(外文):Weng Sing hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:130
中文關鍵詞:熔融還原煉鐵爐數值模擬噴吹管
外文關鍵詞:smeltermathematic modelingtuyere
相關次數:
  • 被引用被引用:2
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展出一數學模式來模擬熔融還原煉鐵製程中氣體底吹現象的流體流動情形。其中包括氣體上浮時如何引導鐵水流動,而鐵水流動又如何影響氣體上浮的方式。對不同的操作條件如氣體流量、液面高度及底部外圍噴吹管傾斜吹射對流場變化的影響,皆在本研究中進行探討。
本數學模式屬於一三度空間液-氣兩相交互影響的流體流動解析系統,在液體流動方面是採用SOLA-SURF的計算流體力學技術以及k-e turbulence model來對熔融爐內的流動問題進行分析。而在兩相流的處理上則分別採用了Lagragian分離(Discrete)流體模式與Eulerian single phase模式來處理氣泡的流動,兩者的理論核心模式皆是使用液相連續及動量守恆方程式、擾流模式以及合適的邊界條件。
建立之數學模式即被用來模擬熔融還原爐系統。Lagragian分離模式方面,採用五支噴吹管進行底吹氣體吹射,結果發現當氣體流量越大,液體的流速越快,使得帶動流體環流速度、液面速度增加。比較底部除中心以外其他噴吹管皆傾斜吹射與噴吹管皆垂直向上吹射的兩種噴吹管設置,由流場型態發現有傾斜吹射者的環流區較寬、滯留區也較小。Eulerian模式方面,測試圓柱爐體系統,模擬結果顯示氣泡釋放頻率愈高;即流量愈大,連續氣泡追撞的情形愈明顯,氣泡上升速度也愈快。而氣泡直徑增加,也會有相同的影響。經由數值模擬的檢驗,製程條件對流場分佈情形的影響可以獲得良好的評估。

A mathematical model has been developed to simulate the fluid flow phenomena induced by bottom gas injection in the smelter for direct iron ore smelting reduction process. The concerned fluid flow phenomena include how molten iron is induced to flow by the flotation of gas bubbles and how the motions of gas bubbles are affected by the liquid flow. The effects of design and operating conditions such as gas flow rate, liquid surface height, and inclined injection from off-center tuyeres on the fluid flow phenomena are also investigated in this research.
The mathematical model is basically a three-dimensional liquid-gas interactive flow analysis system. For the analysis of turbulent liquid flow phenomena, a computational fluid dynamics technique, named SOLA-SURF, incorporated with the *-* two equation turbulence model is employed. To handle the flows of gas bubbles and the interactions between liquid and gas, a Lagrangian two phase model and an Eulerian single phase model are applied.
The developed mathematical model is then tested on a direct iron smelting reduction furnace with five tuyeres blowing gas into the furnace from bottom. The simulated results of Lagragian discrete model show that as gas flow rate is increased, liquid is induced to flow faster, circulating zone becomes broader, and liquid near top surface flows faster. As the off-center tuyeres are inclined for 14°, the circulating zone becomes broader compared to the case where all bottom tuyeres blow gases vertically. The Eulerian model is tested on a cylindrical furnace. The simulated results show that as the released frequency of gas bubble and/or tuyere diameter is increased; gas flow rate is increased, the rising velocity of gas bubble is faster.

摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
1-1研究背景 1
1-2文獻回顧 6
1-2-1 熔融還原煉鐵製程之回顧 6
1-2-2 氣體攪拌數學模擬之回顧 7
1-2-3 大氣泡流動的文獻回顧 10
1-3研究目的 12
第二章 理論基礎 21
2-1物理現象 21
2-2 氣體流量換算 26
2-2-1全尺寸水模流量換算 26
2-3數學模式 30
2-3-1小氣泡攪拌 30
2-3-1-1氣體的控制方程式 31
2-3-1-2液體的控制方程式 32
2-3-2大氣泡吹射 34
2-4兩相擾流模式 36
2-5自由液面的界定 38
2-6定義氣-液兩相自由界面的方法 39
第三章 數值解析方法 46
3-1系統簡化與假設 47
3-1-1熔融還原爐小氣泡攪拌 47
3-1-2熔融還原爐大氣泡吹射 47
3-2 系統網格分割與變數安排 48
3-3小氣泡攪拌方程式的差分化 49
3-3-1氣泡運動方程式的有限差分化 49
3-3-2液體控制方程式的差分化 50
3-4大氣泡吹射有限差分化 53
3-5擾流方程式的差分化 54
3-6連續方程式與壓力修正方法 55
3-6-1單相流之修正 55
3-6-2兩相流之修正 58
3-7高度函數的差分化 61
3-8速度場之起始條件及邊界條件 62
3-8-1氣泡運動的起始條件 62
3-8-2液體流動的邊界條件 62
3-8-3 純量之邊界條件 65
第四章 結果與討論 76
4-1熔融還原爐氣體底吹小氣泡攪拌之數學模擬76
4-1-1爐體之網格分割 76
4-1-2小氣泡流場解析結果 77
4-2大氣泡吹射之氣泡型態及流場模擬 81
4-2-1大氣泡系統網格劃分 81
4-2-2大氣泡吹射氣泡型態與流場解析結果82
第五章 結論 121
第六章 建議未來工作 122
參考文獻 124

1. M. J. Corbett, “Process Developments in Coal-based Ironmaking”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p21-25.
2. M. Baba, “Current Status of JISF’s Direct Iron Ore Smelting Reduction Process”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p15-20.
3. G. R. Belton and R. J. Fruehan, “Rate Phenomena in Iron Bath Smelting”, The Ethem T. Turkdogan Symposium, 1994, p3-21.
4. A. Shinotake and Y. Takamoto, “Combustion and Heat Transfer Mechanism in Iron Bath Smelting Reduction Furnace”, ATS Steelmaking Conference, 1992, p965-973.
5. H. J. Li and M. Tokuda, “Thermodynamic Simulation on the Behavior of Recycling Elements in the Iron Bath Smelting Reduction Process”, ISIJ International, Vol. 33, 1993, No.5, p539-548.
6. M. P. Davis, K. Pericleous, M. P. Schwarz and M. Cross, “Mathematical Modelling Tools for the Optimisation of Direct Smelting Process”, Conference Proceedings on Computational Fluid Dynamics in Mineral & Metal Processing & Powder Generation, 1997.
7. D. Mazumdar and R. I. L. Guthire, “The Physical and Mathematical Modelling of Gas Stirred Ladle Systems”, ISIJ International, Vol. 35, 1995, No. 1, p1-20.
8. J. Szekely, H. J. Wang and K. M. Kiser, “Flow Pattern and Velocity Prediction in a Water Model of an Argon-Stirred Ladle”, Metallurgical Transactions B, Vol. 13, 1976, p287-295.
9. J. Szekely, T. Lehner and C. W. Chang, “Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles”, Ironmaking and Steelmaking, No. 6, 1979, p285-293.
10. T. DebRoy, A. K. Majumdar and D. B. Spalding, “Numerical Prediction of Recirculation Flows with Free Convection Encountered in Gas-Agitated Reactors”, Applied Mathematical Modeling, September, 1978, p146-150.
11. T. DebRoy, A. K. Majumdar, “Predicting Fluid Flow in Gas-Stirred Systems”, Journal of Metals, November, 1981, p42-47.
12. J. H. Grevet, J. Szekely and N. E. El-Kaddah, “An Experimental and Theoretical Study of Gas Bubble Driven Circulation Systems”, International Journal of Heat and Mass Transfer, Vol. 25, No. 4, 1982, p487-497.
13. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Method in Applied Mechanics and Engineering, Vol. 3, 1974, p269-289.
14. Y. Sahai and R. I. L. Guthrie, “Hydrodynamics of Gas Stirred Melts”, Metallurgical Transactions B, Vol. 13, 1982, p193-211.
15. J. S. Woo, J. Szekely, A. H. Castillejos, and J. K. Brimacombe, “A Study on the Mathematical Modeling of Turbulent Recirculating Flows in Gas-Stirred Ladles”, Metallurgical Transaction B, Vol. 21B, 1990, p269-277.
16. S. T. Johansen, “Fluid Flow in Bubble-Stirred Ladle”, SINTEF Report, 1986.
17. 何永和, “煉鋼製程二次精煉中盛鋼桶氣體攪拌的三度空間擾流流場解析之研究”, 國立成功大學碩士論文, 1992.
18. D. Mazumdar and R. I. L. Guthrie, “An Assessment of a Two Phase Calculation Procedure for Dynamic Modeling of Submerged Gas Injection in Ladles” , ISIJ International, Vol. 34, 1994, p384.
19. S. T. Johansen, and F. Boysan, “Fluid Dynamics in Bubble-Stirred Ladle: Part II. Mathematical Modeling”, Metallurgical Transactions B, Vol. 19B, 1988, p755-764.
20. Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.
21. O. J. Ilegbusi and J. Szekely, “The Modeling of Gas-Bubble Driven Circulation Systems”, ISIJ International, Vol. 30, 1990, p731.
22. H. Turkoglu and B. Farouk, “Numerical Computations of Fluid Flow and Heat Transfer in a Gas-Stirred Liquid Bath”, Metallurgy Transaction, Vol. 21B, 1990, p771.
23. D. Mazumdar and R. I. L. Guthrie, “Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgical Transactions B, Vol. 16, 1985, p83-90.
24. D. Mazumdar and R. I. L. Guthrie, “Numerical Computation of Flow and Mixing in Ladle Metallurgy Steelmaking Operations (CAS Methods) ”, Applied Mathematical Modeling, Vol. 10, 1986, p25-32.
25. R. I. L. Guthrie, “Physical and Mathematical Models for Ladle Metallurgy Operations”, Conference Proceeding on Mathematical Modeling of Materials Processing Operations, 1987, p447-482.
26. Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.
27. Lage Jonsson and Par Jonsson, “Modeling of Fluid Flow Conditions around the Slag/Metal Interface in a Gas-stirred Ladle”, ISIJ International, Vol. 36, No. 9, 1996, P1127-1134.
28. Lage Josson, Carl Erik Grip, Arne Johansson and Par Jonsson, “Three-phase (Steel, Slag, Gas) Modeling of the CAS-OB Process”, Steelmaking Conference Proceedings, 1997, P69-82.
29. M. Zhou and J. K. Brimacombe, “Critical Fluid-Flow Phenomenon in Gas-Stirred Ladle”, Metallurgy Transaction, Vol. 25B, 1994, p681-693.
30. P. S. Mohanty, T. Sundararajan and N. Chakraborti, “A Finite Element Modeling Analysis of Flow and Mass Transfer through Nonspherical Bubbles in a Copper Converter”, Metallurgy Transaction, Vol. 24B, 1993, p617-626.
31. J. D. Bugg and R. D. Rowe, “Modeling the Initial of Large Cylindrical and Spherical Bubbles”, International Journal For Numerical Methods In Fluids, Vol. 13, 1991, p109-129.
32. A. Tomiyama, A. Sou, H. Minagawa and T. Sakaguchi, “Numerical Analysis of a Single Bubble by VOF Method”, JSME International Journal, Vol. 36B, No.1, 1993, p51-56.
33. A. Nishihara, S. Kieda and Y. Kunugi, “Numerical Analysis of the Motion of a Bubble Using MAC Method”, 日本機械學會論文集, Vol. 59B, 1993, p126-130.
34. D. Bhaga and M. E. Weber, “In-Line Interaction of a Pair of Bubbles in a Viscous Liquid”, Chemical Engineering Science, Vol. 35, 1980, p2467-2474.
35. I. Komasawa, T. Otake and M. Kamojima, “Wake Behavior and Its Effect on Interaction Between Spherical Cap Bubbles”, Journal of Chemical Engineering of Japan, Vol. 13, 1980, p103-109.
36. S. O. Unverdi and G. Tryggvason, “A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows”, Journal of Computational Physics, Vol. 100, 1992, p25-37.
37. S. H. Brecht and J. R. Ferrante, “Vortex-in-Cell Simulations of Buoyant Bubbles in Three Dimensions”, Physical Fluids A, Vol. 1, No. 7, 1989, p1166-1191.
38. M. Ishikawa, “Operation Results of The DIOS Pilot Plant”, Ironmaking Conference Proceedings, 1996, p415-421.
39. S. H. Kim and R. J. Fruehan, “Physical Modeling of Liquid/Liquid Mass Transfer in Gas Stirred Ladles”, Metallurgical Transactions B, Vol. 18B, 1987, p381-390.
40. J. E. Welch, F. H. Harlow, J. P. Shannon and B. J. Daly, “The MAC Method:A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces”, Los Alamos Scientific Laboratory report LA-3425, 1966.
41. 葉俊麟, “扁剛胚連住過程中鋼液分配器設計/操作上之數學模式發展及其應用研究”, 國立成功大學博士論文, 1993.
42. M. C. Diaz, S. V. Komarov and M. Sano, “Bubble Behavior and Absorption Rate in Gas Injection through Rotary Lances”, ISIJ International, Vol. 37, 1997, p1-8.
43. J. F. Davidson and B. O. G. Schuler, Transactions Institution of Chemical Engineers, Vol. 38, 1960, pp385.
44. 潘錫明, “盛鋼桶氣體吹射攪拌製程及鋼液分配器熱流場解析之數學模式發展及其水模研究”, 國立成功大學博士論文, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top