跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝永偉
研究生(外文):Yung Wei Shieh
論文名稱:脈衝KrF雷射退火對銅膜優選生長與微結構及電阻率之影響
論文名稱(外文):Effects of Pulsed KrF Laser Annealing and Vacuum Annealing on (111) Preferred Orientantation, Microsturctures and Electrical Resistivity of the Copper Films
指導教授:林文台
指導教授(外文):Wen Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:109
中文關鍵詞:雷射退火真空退火優選方位銅膜電遷移
外文關鍵詞:Laser AnnealingVacuum AnnealingPreferred OantionCopper FilmsElectromigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究對不同鍍膜方式(E-Gun與Sputter)生長於TiN/Si及TiN/SiO2之銅膜,施以真空退火及脈衝KrF雷射退火探討其對銅膜優選生長,微結構,及電阻率之影響。以電子槍蒸鍍之銅膜,經雷射退火後可促進(111)優選方向生長,而以濺鍍法生長之銅膜經雷射退火後則是促進(200)方向生長,其可能是因濺鍍銅膜中含有較多氧所造成的。而高溫400℃生長之TiN具有TiN(200)之方向,鍍銅膜後經雷射退火會些微阻礙(111)優選生長。以本研究結果得知銅膜厚度為1000~3500Å,當雷射退火能量密度在0.3~0.8J/cm2時,電阻率為2.3~2.4μΩ-cm,而(111)之TC(Texture Coefficient)值可達1.6~1.74。此外,銅膜經雷射退火後具有平滑(smooth)之表面,無孔洞。而銅膜經真空退火後並無促進(111)之優選生長,同時甚多的孔洞仍然存在。

Abstract
Effects of pulsed KrF laser annealing and vacuum annealing on the preferred orientation, microstructures, and electrical resistivity of Cu films deposited on TiN/Si and TiN/SiO2/Si by electron gun (E-gun) and sputtered gun were studied respectively. Upon puled KrF laser annealing the (111) preferred orientation of Cu films deposited by E-gun evaporation was enhanced, while that of Cu films deposited by sputtering was degraded. The possible reason may be attributed to the larger amounts of oxygen present in the Cu films deposited by sputtering. The TiN films grown on Si at higher temperatures such as 400℃ had (200) preferred orientation which somewhat degraded the (111) preferred growth of Cu film by pulsed KrF laser annealing. In the present study, for the Cu films 1000-3500Å thick annealed at an energy density of 0.3-0.8 J/cm2 the electrical resistivity in the range of 2.3-2.4 μΩ-cm and the (111) texture coefficient(TC) in the range of 1.64-1.74 could be obtained. In addition, the laser-annealed Cu films were very smooth without voids. Upon vacuum annealing the (111) preferred orientation of Cu films could not be improved, meanwhile significant amounts of voids were still present in them.

一、 簡介......................................................1
1-1.前言.......................................................1
1-2.銅膜導線之特性.............................................2
1-3.擴散障礙層之理論與分類.....................................3
1-3-1.擴散障礙層原理...........................................3
1-3-2.擴散障礙層之分類.........................................4
1-3-3.擴散障礙層於半導體之應用.................................6
1-4.薄膜質量遷移之現象.........................................9
二、雷射製程..................................................13
2-1.準分子雷射................................................13
2-2.雷射製程特性與反應機制....................................14
2-3.脈衝雷射退火..............................................16
2-4.雷射退火在半導體工業上的應用..............................17
三、銅膜之優選方位生長........................................19
四、研究動機..................................................21
五、實驗流程..................................................23
六、實驗方法與步驟............................................23
6-1.基板種類..................................................23
6-2.Barrier基板備製...........................................23
6-3.TiN擴散障礙層之清洗.......................................24
6-4.鍍膜方式..................................................24
6-5.退火方式..................................................25
6-6.微結構與界面結構之觀察....................................26
6-7.縱深成份分析..............................................27
6-8電性量測...................................................27
6-9.Cu膜[111]繞射分析.........................................28
七、實驗結果與討論............................................28
7-1.不同TiN基板對銅膜之影響...................................28
7-1-1.E-Gun Cu1000Å(室溫)/TiN(200℃) 雷射退火................29
7-1-2.E-Gun Cu1000Å(室溫)/TiN(400℃) 雷射退火................30
7-1-3.比較相同E-Gun鍍膜於不同基板之銅膜性質...................31
7-2.不同鍍膜方式對銅膜性質之影響..............................31
7-2-1.濺鍍Cu1000Å(室溫)/TiN雷射退火..........................32
7-2-2.不同鍍膜方式之銅膜性質比較..............................33
7-3.不同鍍膜基板溫度及銅膜厚度之觀察..........................34
7-4.不同退火方式對銅膜性質之影響..............................34
7-4-1.E-Gun Cu3500Å(150℃)/TiN 雷射退火......................34
7-4-2.E-Gun Cu3500Å(150℃)/TiN 真空退火......................36
7-4-3.比較於不同退火方式之銅膜性質............................37
7-5.雷射退火對銅膜熔解與凝固現象之探討........................39
八、結論......................................................41
九、參考文獻..................................................43

1. E.M. Atakov, J. Ling, J. Maziarz, A. Shepela, B. Miner, C. England, W. Harris, and D. Dunnell, IEEE Annual intermational Reliability Physics Symposium, p.342 (1995).
2. T. Hosoda, H. Yagi, and H. Tsuchikawa, IEEE Annual intermational Reliability Physics Symposium, p.202 (1989).
3. D. Pramanik, MRS Bulletin, 11, 57 (1995).
4. M. E. Thomas. Mater. Chem. Phys., 41, 167 (1995).
5. X.W. Lin, and D. Pramanik, Solid State Technology, oct., 63 (1998).
6. 廖信一, 工業材料 147期, 88年3月, p.88.
7. C.K. Hu, and J.M.E. Harper, Mater. Chem. Phys., 52, 5 (1998).
8. P. Merchant and T. Cass, IEEE Annual intermational Reliability Physics Symposium, p.259 (1984).
9. T. Nemoto, and T. Nogami, IEEE Annual intermational Reliability Physics Symposium, p.207 (1994).
10. J.H. Jou, C.H. Song, and H.T. Lu, Chinese Journal of Materials Science, 30, 239 (1998).
11. S.P. Murarka, Materials Science and Engineering, 19, 87 (1997).
12. R.P. Vinci, E.M. Zielinski, and J.C. Bravman, Thin Solid Films, 262, 142 (1995).
13. J.W. Mayer, S.Q. Wang, T.L. Alford, and J.Li, Thin Solid Film, 262, vii-viii.
14. S.K. Koh, W.K. Choi, K.H. Kim, and H.J. Jung, Thin Solid Films, 287, 266 (1996).
15. K.H. Kim, H.G. Jang, S.Han, H.J. Jung, S.K. Koh, and D.J. Choi, J. Mater. Res., 13, 1158 (1998).
16. S.S. Wong, J.S. Cho, H. Kang, and C. Ryu, Mater. Chem. Phys., 41, 229 (1995).
17. D.B. Knorr, and D. P. Tracy, Mater. Chem. Phys., 41, 206 (1995).
18. S. Kim, J.M. Park, and D.J. Choi, Thin Solid Films, 320, 95 (1998).
19. S. Kim, D.J. Choi, K.R. Yoon, K.H. Kim, and S.K. Koh, Thin Solid Films, 311, 218 (1997).
20. H.K. Kang, J.S.H. Cho, and S.S. Wang, IEEE Electron Device Letters, 13, 448 (1992).
21. J. Tao, N.W. Cheung, IEEE Electron Device Letters, 14, 249 (1993).
22. C. Lingk, and M.E. Gross, J. Appl. Phy., 84 , 5547 (1998).
23. S.H. Corn, J.L. Falconer, and A.W. Czanderna, J. Vac. Sci. Technol. A., 6, 1012 (1988).
24. M. Wittmer, J. Vac. Sci. Technol. A, 2, 273 (1984).
25. M.A. Nicolet, Thin Solid Films, 52, 415 (1978).
26. M. Takeyama, and A. Noya, Jpn. J. Appl. Phys. Part1., 36, 2261 (1997).
27. D.S. Yoon, H.K. Baik, and S. M. Lee, J. Appl. Phys., 83, 8074 (1998).
28. E. Ivanov, Thin Solid Films, 332, 325 (1998).
29. J.S. Reid, E. Kolawa, R.P. Ruiz and M.A. Nicolet, Thin Solid Films, 236, 319 (1993).
30. K. Hinode, and Y. Homma, IEEE Annual intermational Reliability Physics Symposium, p.25 (1990).
31. S. Corn, J. Falconer, and A.W. Czanderna, J. Vac. Sci. Technol. A, 6,1012 (1998).
32. 劉重希, 國立清華大學材料科學工程研究所,博士論文,民國八十四年.
33. B.S. Kang, S.M. Lee, J.S. Kwak, D.S. Yoon, and H.K. Baik, J. Electrochem. Soc. 144, 1807 (1997).
34. J.S. Kim, H.K. Baik, J.H. Kim, H.K. Baik, J.H. Kim, and S.M. Lee, Appl. Phys. Lett., 72, 2832 (1998).
35. M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, J. Appl. Phys., 79, 6932 (1996).
36. K.M. Chang, T.H. Yeh, I.C. Deng, and C.W. Shih, Appl. Phys., 82, 1469 (1997).
37. C.K. Hu, K.Y. Lee, L. Gignac, and R. Carruthers, Thin Solid Films, 308-309, 443 (1997).
38. M. Takeyma, and A. Noya, Jpn. J. Appl. Phys., 36, 2261(1997).
39. A. Noya, M. Takeyama, K. Sadaki, E. Aoyagi, and K. Hiraga, Jpn. J. Appl. Phys., Part1, 33, 1528 (1994).
40. C. Lee, and Y.H. Shin, Mater. Chem. Phys., 57, 172 (1998).
41. Y.J. Lee, B.S. Suh, M.S. Kwon, and C.O. Park, J. Appl. Phys., 85, 1927 (1999).
42. S.Q. Wang, L. Raaijmakers, B.J. Burrow, S. Suthar, S. Redkar. And K.B Kim, J. Appl. Phys., 68, 5176 (1990).
43. M. Avinum, N. Barel, W.D. Kaplan, M. Eizenberg, M.Naik, T. Guo, L.Y. Chen, R. Mosely, K. Littau, S. Zhou, and L. Chen, Thin Solid Films, 320, 67 (1998).
44. A. Misra, M.F. Hundley, D. Hristova, H. Kung, T.E. Mitchell, and M. Nastasi, J. Appl. Phys., 85, 302 (1999).
45. Y. Ezer, J. Harkonen, V. Sokolov, J. Saarilahti, J. Kaitila, and P. Kuivalainen, Materials Research Bulletin, 33, 1331 (1998).
46. J.Y. Lee, and J.W. Park, Jpn. J. Appl. Phys., 35, 4280 (1996).
47. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett., 64, 1511 (1994).
48. M. Kageyama, K. Hashimoto, and H. Onoda, IEEE Annual intermational Reliability Physics Symposium, p.97 (1991).
49. K. Abe, Y. Harada, and H. Onoda, Appl. Phys. Lett., 71, 2782 (1997).
50. J. Hu, M. Ameen, G. Leusink, D. Webb, J.T. Hillman, Thin Solid Films, 308-309, 589 (1997).
51. Y.C. Peng , L.J. Chen, W.Y. Hsieh, Y.R. Yang, and Y.F. Hsieh, J. Vac. Sci. Technol. B, 16, 2013 (1998).
52. M.K. Lee, H.S. Kang, W.W. Kim, J.S. Kim, and W.J. Lee, J. Mater. Res., 12, 2393 (1997).
53. G.A. Dixit, C.C. Wei, and F.T. Liou, Appl. Phys. Lett., 62, 357 (1997).
54. S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, J. Mater. Sci., 33, 1777 (1998).
55. K.C. Park, and K.B. Kim, lvo J.M.M. Raaijmakers, and K. Ngan, J. Appl. Phys., 80, 5674 (1996).
56. S. Nagarjuna, K. Balasubranmanian, and D. S. Sarma, Materials Science and Engineering, 225, 188 (1997).
57. M.H. Francombe, J.L. Vossen, Physics of Thin Films, 16, 263 (1992).
58. R. Frankovic, and G.H. Bernstein, IEEE. Trancactions On Electron Devices, 43, 2233 (1996).
59. R.E. Hummel, S.M. Goho, and R.T. Dehoff, IEEE Annual intermational Reliability Physics Symposium, p.234 (1984).
60. Gladkikh, M. Karpovski, and A. Palevski, Microelectron. Reliab., 37, 1557 (1997).
61. M. Hosaka, T. Kouno, and Y. Hayakawa, IEEE Annual intermational Reliability Physics Symposium, p.329 (1998).
62. C.Y. Chang, and S.M. Sze, ULSI Technology, McGRAW-HiLL, (1996).
63. D. Gupta, and P. S. Ho, Thin Solid Films, 72, 399 (1980).
64. J.R. Lloyd, and J.J clement, Thin solid Films, 262, 135 (1995).
65. C.W. Park and R.W. Vook, Appl. Phys. Lett., 59, 175(1991).
66. S. Vaidy and A. K. Sinha, Thin Solid Flims, 75, 253 (1981).
67. A.Christou, Electromigration and Electronic Device Degradation, Wiley, (1994).
68. D.B. Knoor, D.P. Tracy, and K.P. Rodbell, Appl. Phys. Lett., 59, 3241 (1991).
69. J.M.E. Harper, and K.P. Robddell, J. Vac. Sci. Technol. B, 15, 763 (1997).
70. D.B. Knorr, and K.P. Rodbell, J. Appl. Phts. 79, 2409 (1996).
71. Douglas B. Chrisey, and Graham K. Hubler, “ Pulsed Laser Deposition of Thin Films”, John Wiley & Sons. Inc. p.25 (1994).
72. E.D. Anna, G. Leggiei, and A. Luchess, Appl. Phys., A45, 325 (1988).
73. Shang-Mao Dieng, “ Laser Introduction”, p.308 (1995).
74. 戴昌銘, 科儀新知, 第8卷五期, 民76, p.81-88.
75. J. Narayan and Q.W. Holland, J. Appl. Phys. 56, 2913 (1984).
76. Milton Ohring, “ The Material Science of Thin Films”, Academic Press, Inc.(1992).
77. D.P. Tracy, and D.B. Knorr, J. electron. Mater., 22, 611 (1993).
78. H. Onoda, T. Narita, K. Touchi, and K. Hashimoto, IEEE Annual intermational Reliability Physics Symposium, p.139 (1996).
79. P.J. Dobson, and B.J. Hopkins, Thin solid film, 5, 93 (1970).
80. K. Kamoshida, and Y. Ito, J. Vac. Sci. Technol. B, 15, 961 (1997).
81. Y.S. Kim, D. Jung, D.J. Kim, and S.K. Min, Jpn. J. Appl. Phys., 37, 991 (1998).
82. H. Toyoda, T. Kawanoue, M. Hasunuma, H. Kaneko, and M. Miyauchi, IEEE Annual intermational Reliability Physics Symposium, 178 (1994).
83. L. Arnaud, R. Gonella, G. Tartavel, J. Torres, C. Gounelle, Y. Gobil, and Y. Morand, Microelectronics Reliability, 38,1029 (1998).
84. Kazuhide,Y. Harada, and O. Hiroshi, IEEE Annual intermational Reliability Physics Symposium, p.342 (1998).
85. T. Takewaki, H. Yamada, T. Shibata, T. Ohmi, and T. Nitta, Mater. Chem. Phys., 41, 182 (1995).
86. W.M. Kuschke, A. Kretschmann, R.M. Keller, R.P. Vinci, C. Kaufmann, and E. Arzt, J. Mater. Res., 13, 2962 (1998).
87. C. Ryu, Alvin L.S. Loke, T. Nogami, and S.S. Wong, IEEE Annual intermational Reliability Physics Symposium, p.201 (1997).
88. J.M. Poate, H.J. Leamy, T.T. Sheng, and CT. K. Cller, Appl. Phys. Lett., 33, 918 (1978).
89. D.R. Chen, J.S. Luo, W.T. Lin, C.Y. Chang, and P.S. Shih, Appl. Phys. Lett., 73, 1355 (1998).
90. R.J. Baseman, J. Vac. Sci. Technol B., 8, 84 (1990).
91. J.S. Luo, W.T. Lin, C.Y. Chang, and W.C. Tsai, J. Appl. Phys., 82, 3261 (1997).
92. J.S. Luo, W.T. Lin, C.Y. Chang, and W.C. Tsai, Mater. Chem. Phys., 54, 160 (1998).
93. D.B. Tuckerman, and A.H. Weisberg, IEEE Electron Dev Lett., 7, 1 (1986).
94. R. Mukai, M. Nakano, and N. Sasaki, IEEE Electron Dev Lett., 8, 76 (1987).
95. S.Q. Wang, and E. Ong, J. Vac. Technol. B., 10, 149 (1992).
96. E.M. Zielinski, R.P. Vinci, and J.C. Bravman, J. Appl. Phys., 76, 4516 (1994).
97. D.N. Lee, J. Mater. Sci. 24, 4375 (1989).
98. K. Min, S. Hofman, and R. Shimizu, Thin Solid Films, 295, 1 (1997).
99. J. Pelleg, L.Z. Zevin, and S. Lungo, Thin Solid Films, 197, 117 (1991).
100. U.C. Oh, and J.H. Je, J. Appl. Phys., 74, 1692 (1993).
101. J. Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films, 197, 117 (1991).
102. H. Shibata, M. Murota, and K. Hashimoto, Jpn. J. Appl., 32, 4479 (1993).
103. K. Min, S. Hofman, and R. Shimizu, Thin Solid Films, 295, 1 (1997).
104. M. Kageyama, Y. Tatara, and H. Onoda, Jpn. J. Appl. Phys., 32, 4694 (1993).
105. D.A. Porter, K.E. Eastering, “ Phase transformation in Metals and alloys”, Chpaman&Hall, (1993).
106. D.R. Askeland, “The Science and Engineering of Materials”, Thomson, (1992).
107. D.P. Tracy, D.B. Knorr, and K.P. Rodbell, J. Appl. Phys., 76, 2671 (1994).
108. D.B. Knorr, S.M. Merchant, and M.A. Biberger, J. Vac. Sci. Technol. B., 16, 2734 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top