跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉思謙
研究生(外文):Sz-Chian Liou
論文名稱:Ba2Ti9O20微波介電陶瓷合成機構與燒結行為之研究
論文名稱(外文):Formation Mechanism and Sintering Behavior of Ba2Ti9O20
指導教授:方滄澤
指導教授(外文):Tsang-Tse Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:82
中文關鍵詞:微波成核與成長JMA方程式板條狀雙晶燒結
外文關鍵詞:microwavenucleation and growthJMA Equationlath-shapetwinsintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介電共振器的要求為須具備高介電常數、低介電損失(高Q值)及低的共振頻率溫度係數,其中Ba2Ti9O20為常被用於製做介電共振器的介電材料之一。本研究以BaTi4O9與TiO2為反應的前導粉末,以固態反應方法來合成Ba2Ti9O20相,並對其合成機構與燒結行為等方面作探討。
在固態反應過程中,我們利用掃描式電子顯微鏡與穿透式電子顯微鏡等觀察顯微結構發現,合成Ba2Ti9O20是經由成核與成長的方式,而呈lath-shape的Ba2Ti9O20晶粒與Johnson-Mehl-Avrami (JMA)方程式的理論分析可更進一步支持合成Ba2Ti9O20是經由成核與成長的機構,成核為瞬時成核,成長為受“擴散控制”。另藉由穿透式電子顯微鏡的觀察發現到BaTi4O9的晶粒中有雙晶的存在,合成過程中雙晶的形成會增加成核所須的活化能,且會使晶粒受擠壓而延遲Ba2Ti9O20相核的生成!
  本實驗利用球磨2次的步驟,可以在1200C的溫度下持溫3小時,即可完全合成單相的Ba2Ti9O20,不但解決
了固態反應合成的困難,而且利用已合成單相的Ba2Ti9O20粉末做單相燒結,可達到99%的理論密度!

The requirements of a dielectric resonators are high dielectric constant , low dielectric loss ( high Q factor ) , and low temperature coefficient of resonant frequency . Microwave measurements of Ba2Ti9O20 show that it is uniquely suited for dielectric resonators . BaTi4O9 and TiO2 were used to study the formation mechanism of Ba2Ti9O20 and sintering behavior was also investigated .
During process of solid-state reaction , scanning electron microscopy and transmission electron microscopy were used to observe the microstructures . It was found that the formation of Ba2Ti9O20 might via the nucleation and growth , which was further supported by lath-shape grain and theoreitical analysis by Johnson-Mehl-Avrami ( JMA ) Equation . By transmission electron microscopy observation , it was found that twinning existed in the grain of BaTi4O9 , which would increase the activation energy of nucleation of Ba2Ti9O20 , and in true would inhibit the nucleation of Ba2Ti9O20 .
Using double ball-milling , single-phase of Ba2Ti9O20 could be obtained by calcining at 1200C for 3 h . Not only the difficult of solid-state synthesis could be solved , but also the conventional sintering of there single-phase powder could achieved the theoretical density of 99% !

第一章 緒論
1-1 前言
1-2 本研究之重點及目的
第二章 文獻回顧與理論回顧
2-1 微波介電陶瓷材料
2-2 Ba2Ti9O20 微波介電陶瓷材料結構與性質
2-2-1 Ba2Ti9O20 結構
2-2-2 Ba2Ti9O20 性質
2-2-3 Ba2Ti9O20粉末合成反應
2-3 Ba2Ti9O20合成機構的探討
2-4 燒結
第三章 實驗步驟及方法
3-1 藥品
3-2 實驗流程及樣品分析
3-2-1 探討Ba2Ti9O20粉末合成反應
3-2-2 Ba2Ti9O20合成機構
3-2-3 改變製程對合成Ba2Ti9O20的影響
3-2-4 探討燒結行為的實驗流程
3-3 性質的量測
3-3-1 X光繞射分析
3-3-2 密度量測
3-3-3 SEM顯微結構觀察
3-3-4 TEM顯微結構觀察
3-4 數據的分析與計算
第四章 結果與討論
4-1 Ba2Ti9O20粉末合成反應
4-2 Ba2Ti9O20合成機構的探討
4-3 影響Ba2Ti9O20合成的原因
4-4 新的合成Ba2Ti9O20 相的製程
4-5 燒結行為
第五章 結論

1. R.D.Richtmyer ,“Dielectric Resonator”, J.Appl.Phys. , 10 , 391-398 (1939).
2. S.B.Cohn ,“Microwave Bandpass Filters Containing High-Q Dielectric Resonator”, IEEE Trans. On MTT , MTT-16 ,
218-227(1968).
3. 王惠傑、張鳴助,“微波陶瓷介電共振器材料”,材料與社會,第65期 (民國81年5月).
4. W.D.Kingery et al. ,“Introduction to Ceramics”, Chap.18(1975).
5. 陳雲田,“高頻通訊元件介電材料特性量測”,工業材料,第115期(民國85年7月).
6. K.Wakino. ,“Recent Development of Dielectric Resonator Materials and Filter in Japan”, Ferroelectrics , 91 ,
69-86(1989).
7. 王惠傑,“通訊用介電陶瓷材料及元件”,工業材料,第115期(民國85年7月).
8. R.C.Kell et al. ,“High-Permittivity Temperature-Stable Ceramics Dielectric with Low Microwave Loss”,
J.Am.Ceram.Soc. , 56 , 352-354(1973).
9. T.Yamaguchi et al.,“Newly Developed Ternary(Ca,Sr,Ba) Zirconate Ceramic System for Microwave Resonators”,
Ferroelectrics , 27 , 273-276 (1980).
10. G.Wolfram et al. ,“Existence Range,Structure and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2)”,
Mat.Res.Bull. , 16 , 1455-1463 (1981).
11. P.C.Osbond et al.,“The Properties and Microwave Applications of Zirc onnium Titanate Stannate Ceramics”,
Brit.Ceram.Proc. , 36 , 167-178 (1985).
12. K.Wakino et al.,“Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators”
,J.Am.Ceram.Soc. , 67 , 167-178(1984).
13. S.Nomura et al.,“Ba(Mg1/3Ta2/3 )O3 Ceramics with Temperature-Stable High Dielectric Constant and Low
Microwave Loss ”, Jpn.J.App.Phys. , 21[10] , L624-L626(1982).
14. H.Matsumoto et al.,“Ba(Mg,Ta)O3-BaSnO3 High-Q Dielectric Resonator”, Jpn.J.App.Phys. , 30[9B] ,
2347-2349(1991).
15. K.H.Yoon et al.,“Effect of BaWO4 on the Microwave Dielectric Properties of Ba(Mg1/3Ta2/3 )O3 Ceramics”,
J.Am.Ceram.Soc. , 77[4] , 1062 -1066(1994).
16. K.Matsumoto et al.,“Ba(Mg1/3Ta2/3)O3 Ceramics with Ultra-low Loss at Microwave Frequencies”,Proc.6th IEEE
Inter.Sympo. on Appl. of Ferro., 118-121(1986).
17. O.Renoult et al.,“Sol-Gel Processing and Microwave Characteristics of Ba(Mg1/3Ta2/3)O3 Dielectrics”,
J.Am.Ceram.Soc. , 75[12] , 3337-3340 (1992).
18. K.W.Kirby et al.,“Phase Relations in the Barium Titanate-Titanium Ox ide system”, J.Am.Ceram.Soc. , 74[8] ,
1841-1847(1991).
19. H.M.O*Bryan et al.,“Ba2Ti9O20 as a Microwave Dielectric Reconator ”, J.Am.Ceram.Soc. , 58[9-10] ,
418-420(1975).
20. A.Bystrom et al.,“The Crystal Structure of Hollandite,the Related Manganese Oxide Minerals,and a-MnO ”, Acta
Crystallogr. , 3 , 146-154(1950).
21. J.E.Post et al.,“Symmetry and Cation Displacements in Hollandite:Structure Refinements of
A Hollandite,Cryptomelane and Priderite”, Acta Crystallogr.Sect. , B38 , 1056-1065(1982).
22. G.D.Fallon et al.,“The Crystal Structure of Ba2Ti9O20:A Hollandite-Related Compound”, J.Solid State Chem. , 49
, 56-64(1983).
23. G.Grzinic et al.,“The Hollandite-Related Structure of Ba2Ti9O20 ”,J.Solid State Chem. , 47 , 151-163(1983).
24. E.Tillmanns et al.,“Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9O20”, J.Am.Ceram.Soc. , 66 ,
268-270(1983).
25. H.M.O*Bryan et al.,“Preparation and Unit-Cell Parameters of Single Crystals of Ba2Ti9O20”, J.Am.Ceram.Soc. ,
63[5-6] , 309-310(1979).
26. H.M.O*Bryan et al.,“A New BaO-TiO Compound with Temperature-Stable High Permittivity and Low Microwave
Loss”, J.Am.Ceram.Soc. , 57[10] , 450-453(1974).
27. W.Y.Lin et al.,“Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J.Am.Ceram.Soc. , 82[2]
, 325-30(1999) .
28. W.Y.Lin et al.,“Microwave Properties of Ba2Ti9O20 Doped with Zirconium and Tin Oxides ”, J.Am.Ceram.Soc. ,
82[5] , 1207-1211 (1999).
29. C.Chatterjee et al.,“Effect of SrO addition on Densification and Dielectric Properties of Barium-Nano-Titanate”,
J.Mat.Sci.Let. , 9 , 1049-1051 (1990).
30. S.Nomura et al.,“Effect of MnO on the Dielectric Properties of Ba2Ti9O20 Ceramics at Microwave Frequency”,
Jpn.J.Appl.Phys. , 22 [7] , 1125-1128(1983).
31. K.M.Yoon et al.,“Effect of BaSnO3 on the microwave dielectric properties of Ba2Ti9O20 ”, J.Mater.Res. , 11[8] ,
1996-2001(1999)
32. D.E.Roy et al.,“Phase Equilibria in the System BaO-TiO ”, J.Am. Ceram.Soc. , 38[3] , 102-113(1955).
33. G.H.Jonker et al.,“The Ternary Systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2”, J.Am.Ceram.Soc. , 41[10] ,
390-394(1958).
34. T.Negas et al.,“Subsolids Phase Relations in the BaTiO3-TiO System ”, J.Solid State Chem. , 9 , 297-307(1974).
35. J.Yu ,“Effect of Al2O3 and Bi2O3 on the Formation Mechanism of Sn-Doped Ba2Ti9O20”, J.Am.Ceram.Soc. ,
77[4] , 1052-1056(1974).
36. W.Y.Lin et al.,“Fabrication of undoped near-monophase Ba2Ti9O20 via rapid thermal processing”, J.Mater.Res. ,
71[10] , 869-875(1988).
37. J.J.Ritter et al.,“Alkoxide Precursor Synthesis and Characterization of Phase in the Barium-Titanium Oxide System”,
J.Am.Ceram.Soc. , 69[2] , 155-162(1986).
38. H.C.Lu et al.,“Sol-Gel Process for the Preparation of Ba2Ti9O20 and BaTi5O11”, J.Am.Ceram.Soc. , 74[5] ,
968-972(1991).
39. J.M.Wu et al.,“Factors Affecting the Formation of Ba2Ti9O20”, J.Am. Ceram.Soc. , 71[10] , 869-875(1988).
40. J.H.Choy et al.,“Citrate Route to Uitra-fine Barium Polytitanates with Microwave Dielectric Properties”,
J.Mater.Chem. , 5[1] , 57-63(1995).
41. W.Jander,“Reactions in Solid State at High Temperature”, I.Z.Anorg. Chem. ,163 , 1-30(1927).
42. A.M.Ginstling et al.,“Concerning the Diffusion Kinetics of Reactions in Spherical Particles”, J.Appl.Chem.USSR. ,
23 , 1327-1338(1950).
43. R.M.Barrer,“Diffusion in Spherical Shells , and a New Method of Measuring the Thermal Diffusivity Constant”,
Phil.Mag. , 35[12] ,802(1944).
44. M.Avrami,“Kinetics of Phase Change”, J.Chem.Phys. , 7[12], 1103-1012(1939) ; ibid. , 8[2] , 212-224(1940) ; ibid.
, 9[2] , 177-184(1941).
45. B.V.Eroffev,“Generalized Equations of Chemical Kinetics and Its Application in Reactions Involving Solids”
,Compt.Rend.Acad.Sci.USSR , 52 , 511-514(1946).
46. P.W.M.Jacobs and F.C.Thompkins,“Classifications and Theory of Solid Reactions”,“Solid State Chemistry”
,(Ed.W.E.Garner),(Butterworths,London,Scientific Publications,1953),pp.184-211.47. M.E.Fine,“Phase
Transformations in Condensed Systems”,(MacMillan Co.,1964),pp.47-78.
48. J.W.Christian,“The Theory of Transformations in Metals and Alloys” ,(Pergoman Press,New
York,1965),pp.471-495.
49. R.L.Coble , J.Appl.Phys. , 32 ,787(1961).
50. C.Greskovich et al. , J.Am.Ceram.Soc. , 59 , 336(1976).
51. D.W.Budworth,Trans.Brit.Ceram.Soc.,V69,pp.29(1970).
52. F.F.Lange and B.I.Davis,in“Advances in Ceramics,V.12,Science and Technology of Zirconua II”,Edited by
N.Claussen,M.Ruhle,and A.H.Heuer,Am.Ceram.Soc.Columbus,OH,pp.699-713(1984).
53. J.Zhao et al. , J.Am.Ceram.Soc. , 71 , 530(1988).
54. S.F.Hulbert,“Models for Solid-State Reactions in Powderd Compacts” , J.Br.Ceram.Soc. , 6[1] , 11(1969).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top