跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊振國
研究生(外文):Chen Kuo Yang
論文名稱:磁浮風洞之驗證---力與力矩校正及增強對阻力的抵抗
論文名稱(外文):Verification of Magnetic Suspension Wind Tunnel---Force and Moment Calibration with Drag Improvement
指導教授:林清一林清一引用關係
指導教授(外文):Chin E. Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:136
中文關鍵詞:磁浮風洞力與力矩校正動態校正增強對阻力的抵抗
外文關鍵詞:Magnetic suspension wind tunnelForce and moment calibrationDynamic calibrationDrag improvement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磁浮風洞的研究在成功大學航太所,從理論的發展至磁浮風洞的建置,以建立一完整的磁浮風洞技術。對磁浮風洞的實用化最息息相關的是如何取得風洞實驗中力及力矩的數據。在本論文中,成功大學的10公分 X 10公分的磁浮風洞力與力矩的校正方法被展現,其中包括校正的治具、程序。從校正的實驗中我們知道對阻力抵抗的提升,是我們的另一階段的研究目標。為提升整體磁浮風洞的效能,一全新的12極磁浮風洞,從理論模擬中證實其可行性,並被發展與建置。並且內電流迴路的控制方法被引入此一系統中,以增進其對阻力的抵抗。實驗的結果驗證此一12極的系統有更高的能量密度及更強的阻力抵抗能力。實驗的驗證確立此一磁浮風洞可達成實用化的價值。在實用化的價值方面,磁浮風洞有能力得到動態測試中的力與力矩是我們所重視的。在本論文中,動態校正的方法以正弦波的軌跡變動,使用不同弦波振盪的振幅及頻率以模擬此模型在風洞中所受的不同力與力矩,並由霍耳電流或磁通的電路治具以完成其相對應的力與力矩的校正。其理論背景與實驗結果皆被提出與探討。且一以磁浮風洞量測行進中子彈所受的力與力矩的相關應用被研究與討論,相信伴隨此兩新應用案例的深入探討,我們將可得到更多有關磁浮風洞實用化的應用領域。
A magnetic suspension wind tunnel system has been studied, developed and implemented in IAA, NCKU, and a complete technical survey has been done. To understand the practical value of the developed magnetic suspension wind tunnel, the method to obtain wind tunnel test data, especially the force and moment of the tested model is highly important. In this dissertation, the force and moment calibration method of the NCKU 10 cm x 10 cm magnetic suspension wind tunnel is performed. A calibration facility is designed to appropriately measure model loads during tests. From the experiments, better drag performance is the goal to be achieved. To elevate overall performance of the magnetic suspension wind tunnel, a modified twelve-coil magnetic suspension and balance system is constructed from a result of previous simulations. In the modified twelve-coil magnetic suspension wind tunnel, an internal current loop compensation is proposed to improve drag performance. Experiment results of the modified system are obtained to verify feasibility with less energy consumption and higher controllability. Experiment verification shows the magnetic suspension wind tunnel may be suitable for practical implementation. For practical application, the major concerns is that a magnetic suspension wind tunnel should have the capability to obtain the aerodynamic force and moment during wind activation and dynamic operation. In this dissertation, the dynamic calibration method using the variation of amplitude and frequency to represent different load conditions and the relationships between applied loads and calibrated current or flux can be obtained and calibrated using the Hall current or flux sensing circuit fixtures. The theoretical background and experiment results also have been proposed and discussed. A future study perspective on the special application of using the magnetic suspension wind tunnel in a flying rotating bullet for force and moment measurement is surveyed and discussed. These two new scopes of research will reveal more practical areas for magnetic suspension wind tunnel application.
COVER
ABSTRACT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
CHAPTER
I INTRODUCTION
1.1 Problem Statement Related to MSBS
1.1.1 Some Problems in Wind Tunnel Testing
1.1.2 Support Interference
1.1.3 Dynamics Testing
1.1.4 Productivity
1.2 MSWT in IAA, NCKU
1.2.1 History
1.2.2 Contribution of this Dissertation
1.3 Dissertation Outline
II LITERATURE SURVEY ON WIND TUNNEL
2.1 Aerodynamic Experiment
Water Table Test
Water Hole Test
Wind Tunnel Test
2.2 Wind Tunnel Probliems and Remedies
2.2.1 Low Reynolds Number
Use a Heavy Gas
Increase Model Size
Increase Pressure
Decrease Temperature
2.2.2 Wall Interference
Use Small Models
Use Ventilated Test Sections
Apply Linearized Corrections
2.2.3 Support Interference
Magnetic Suspension
2.2.4 Flow Unsteadiness
Acceptable Levels of Flow Unsteadiness
Sources of Flow Unsteadiness
2.3 Cryogenic Wind Tunnel
2.3.1 Brief History
2.3.2 Principle of Operation
2.3.3 Benefits of Cryogenic Operation
2.4 Adaptive Wall Test Section
2.4.1 Brief History
2.4.2 Principle of Wall Streamlining
2.4.3 Benefits of Adaptive Wall Test Section
2.5 Magnetic Suspension Wind Tunnel
2.5.1 World MSWT Brief Description
O.N.E.R.A, France
University of Southampton, England
AEDC/NASA Langley Research Center,USA
NASA Langley Research Center, LAmstf, USA
National Aerospace Laboratory, Japan
Moscow Aviation Institute, USSR
2.5.2 MSWT Considerations
Unstable Coupling System
Non-contact Sensing System
Electromagnetic Coils and Model Core
Controller
Calibration
2.6 Summary and Conclusion
III FORCE AND MOMENT CALIBRATION
3.1 History Background
3.2 Calibration System Description
3.2.1 Coils Arrangement Description
3.2.2 Position Sensing System
3.2.3 Rocket Type Test Model
3.3 Calibration Theoretical Background
3.4 Calibration Method
3.4.1 Calibration Fixture
3.4.2 Exerting Applied Loads
3.4.3 Calibration Procedures
3.5 Calibration Results
3.5.1 System Coupling Effect
3.5.2 Normal Attitude Condition
3.5.3 Pitch Angle Condition
3.6 Wind Tunnel Test Applications
3.6.1 Calibration Matrix
3.6.2 Wind Tunnel Experiment
3.7 Summary
IV MODIFICATION FOR DRAG IMPROVEMENT
4.1 Introduction
4.2 System Description
4.2.1 Modified Twelve Coil System
4.2.2 Decouple Air Coils
4.2.3 Decouple Arrangement
4.3 Balanced Governing Equations
4.4 Configuration Modification
4.4.1 Drag Coils Flux Distribution
4.4.2 Drag Coils Quasi-optimal Positioning
4.5 Inernal Current Loop
4.5.1 Current Loop Feefback
4.5.2 Sensing Circuit Implementation
4.6 Realization and Verificatoin
4.6.1 Realization
4.6.2 Modified System Verification
4.7 Summary
V PERSPECTIVE STUDIES
5.1 Dynamic Calibration
5.1.1 System Structure
5.1.2 Hall Flux/Current Sensing Circuit Description
5.1.3 Theoretical Background of Dynamic Calibratoin
5.1.4 Dynamic Calibration Method
Dynamic Calibration System Structure
Dynamic Calibration Procedures
5.1.5 Experiment Results
5.2 Application in Flying Rotatint Bullet
5.2.1 Introduction
5.2.2 Realization Method
System Architecture
Bullet Structure
Non-contact Position Sensing System
Force and Moment Calibration
5.2.3 Problem Remarks
5.3 Summary and Discussion
VI DISCUSSION AND CONCLUSION
6.1 Discussion
Force and Moment Calibration
Twelve Pole MSBS
Drag Perfromance
Dynamic Calibration and Application
6.2 Conclusion
PUBLICATION LIST
VITA
REFERENCES
REFERENCES
[1] Anon: Sixth Annual Report of the Aeronautical Society of Great Britain, pp. 75, 1871.
[2] C. E. Lin and L. A. Lee, “Dynamic Control of Magnetic Suspension System” IEEE Advanced Motion Control Conference, Tokyo, July 1990.
[3] C. E. Lin and H. Wu, “A Pitch Control and Implementation for Magnetic Suspension Wind Tunnel Test System”, AASRC Annual Meeting, December, 1990.
[4] R. G. Seippel, Transducers, Sensors & Detectors, Reston Publishing Company, INC., Prentice-Hall, 1983.
[5] C. E. Lin and Y. R. Sheu, “A Real Time Controlled Large-Gap Magnetic Suspension Using One-Dimension Position Measurement”, IEEE Instrumentation and Measurement Technology Conference, IMTC’92, New York, May 12-14, 1992.
[6] C. E. Lin and A. S. Hou, “A Real Time Position and Attitude Sensing CCD in Magnetic Suspension System Application”, IEEE. Trans. on Instrumentation and Measurement, 44(1), 8-14, 1995.
[7] C. E Lin and Y. R. Sheu, “A STFC + PD Control Approach for Large-Gap Magnetic Suspension System Application, IEEE Industrial Electronics Conference, IECON’94, Bologna, Italy, Sept. 5-9, 1994.
[8] C. E. Lin and H. L. Jou, “Force Model Identification for Magnetic Suspension System via Magnetic Field Measurement”, IEEE Trans. on Instrumentation and Measurement, Vol. IM-42, No. 3, pp. 767-771, June 1993.
[9] C. E. Lin and H. L. Jou, “System Implementation of Measurement and Control for a Magnetic Suspension Wind Tunnel”, IEEE Instrumentation and Measurement Technology Conference, IMTC‘95, Wathem, MA, April 22-26, 1995.
[10] C. E. Lin, K. H. Liu and H. L. Jou, “Aspect of Improving Drag Performance in a Magnetic Suspension Wind Tunnel”, The Third Pacific International Conference on Aerospace Science and Technology, PICAST’3, Xian, China, Sept. 1-5, 1997.
[11] Colin P. Britcher, Charles W. Alcorn, and W. Allen Kilgore, “Subsonic Sting Interference on the Aerodynamic Characteristics of a Family of Slanted-Base Ogive-Cylinders”, NASA Contractor Report 4299, 1990.
[12] S. W. Hung, “System Setup and Simulation for 30 cm x 30 cm Magnetic Suspension Wind Tunnel”, National Cheng Kung Univ. Master D. Thesis, June, 1987.
[13] David Nixon, Transonic Aerodynamics, American Institute of Aeronautics and Astronautics, Inc., 1982.
[14] M. H. Tuttle and B. B. Gloss, “Support Interference of Wind Tunnel Models”, NASA TM-81909, March 1981.
[15] Colin P. Britcher and Robert A. Kilogore, “Magnetic Suspension and Balance System”, Lecture Series Advanced Experimental Techniques for Transonic Wind Tunnels, Yokosuka, Kanagawa, Japan, October 12-23, 1987.
[16] W Margoulis, “Nouvelle Methode d’essai de Modeles en Souffleries Aerodynamiques.(A New Method of Testing Models in Wind Tunnels.)”, Comptes Rendus Acad. Sci. Vol. 171, 1920, pp 997-999, Seance du 22 November 1920.
[17] O. M Posniak, “Investigation into the Use of Freon 12 as a Working Medium in a High-Speed Wind Tunnel”, The College of Aeronautics, Cranfield, Note No. 72, November 1957.
[18] R. H. Wright, and V. G. Ward, “NASA Transonic Wind Tunnel Test Sections”, NASA Report No. 1231, 1948.
[19] E. M. Kraft, A. Ritter, and M. L. Laster, “Advances at AEDC in Treating Transonic Wind Tunnel Wall Interference”, Proceeding of ICAS Congress, 15th, London, Vol. 2, pp. 748-769, 1986.
[20] T. B. Owen, ”Techniques of Pressure Fluctuation Measurements Employed in the RAE Low Speed Wind Tunnels”, AGARD Report 173(ARC 10780), 1958.
[21] Dennis G Mabey, ”Some Remarks on the Design of Transonic Tunnels With Low Levels of Flow Unsteadiness,” NASA CR-2722, August 1976.
[22] R. Smelt, “Power Economy in High-Speed Wind Tunnels by Choice of Working Fluid and Temperature”, British R.A.E. Rep. No. Aero 2081, August 1945.
[23] A. Bailey and S. A. Wood, ”Further Development of a High-Speed Wind Tunnel of Rectangular Cross-Section”, British ARC R&M 1853, pp. 16, September 1938.
[24] M. J Goodyer, ”The Self Streamlining Wind Tunnel”, NASA TM-X-72699, August 1975.
[25] S. W. D. Wolf, “The Design and Operational Development of Self-Streamlining Two-Dimensional Flexible Walled Test Sections”, NASA CR-172328, pp. 281, March 1984.
[26] F. T. Holmes, “Axial Magnetic Suspensions”, Review of Scientific Instruments, Vol. 8, pp. 444-447, Nov., 1937.
[27] Marcel Tournier and P. Laurenceau, “Magnetic Suspension of a Model in a Wind Tunnel”, La Recherche Aeronatique, No. 59, pp. 21-27, July-August 1957,
[28] M. J. Goodyer, “The Magnetic Suspension of Wind Tunnel Models for Dynamic Testing”, Univ. of Southampton Ph. D. Thesis, April 1968.
[29] C. P. Britcher, “Some Aspects of Wind Tunnel Magnetic Suspension System with Special Application at Large Physical Scales”, Univ. of Southampton Ph. D. Thesis, July 1982.
[30] C. D. Crain, M. D. Brown, and A. H. Cortner, “Design and Initial Calibration of a Magnetic Suspension for Wind Tunnel Models”, AEDC-TR-65-187, 1965.
[31] R. K. Matthews and M. D. Brown, “Description and Initial Operation of the AEDC Magnetic Model Suspension Facility”, AEDC-TR-70-80, 1970.
[32] C. P. Britcher and M. Ghofrani, “A Magnetic Suspension System with a Large Angular Range”, Rev. Sci. Instrum., Vol. 64, No. 7, pp. 1910-1917, July 1993.
[33] H. Sawada, “The 10cm X 10cm Magnetic Suspension and Balance System at National Aerospace Laboratory”, AIAA 9th Applied Aerodynamic Conference, Seattle, WA., 1991.
[34] H. Sawada and H. Suenaga, “Status of MSBS Study at NAL”, Second International Symposium on Magnetic Suspension Technology, Seattle, WA., August, 1993.
[35] L. B. Beliaey and P. M. Shermanov, “Magnetic Suspension of Models in Wind Tunnels”, Technical Information Department of N. E. Zhukovsky Central Aero-Hydrodynamic Institute, Report No. 557, pp. 58., 1979.
[36] Y. D. Vyshkov and S. A. Kovalnogobov, “Magnetic Suspension and Balance System for Low Speed Wind Tunnel”, Scientific Report of Central Aero-Hydrodynamic Institute, Vol. 17, No. 4, pp. 94-97, 1986.
[37] A. V. Kuzin, “Magnetic Suspension System for Aerodynamic Research”, Instruments and Technique of Experiment, No. 4, pp. 227-230, 1990.
[38] S. Earnshaw, “On the Nature of the Molecular Force Which Regulate the Constitution of the Luminiferous ether”, Trans. Camb. Phil. Soc., pp. 97-112, July 1942.
[39] T. Stephens, “Design Construction and Evaluation of a Magnetic Suspension and Balanced System for Wind Tunnels”, MIT-TR-136, November 1969.
[40] R. P. Boyden, C. P. Britcher and P. Tcheng, “Status of Wind Tunnel Magnetic Suspension Research”, SAE Aerospace Technology Conference and Exposition, Long Beach, CA, October 14-17, 1985.
[41] A. V. Kuzin, G. Shapovalv, and N. Prohorov, “Force Measurements in Magnetic Suspension and Balance System,” 3rd Int‘l Symposium on Magnetic Suspension Technology, Tallahassee, Florida, December 13-15, 1995.
[42] H. Sawada, H. Suenaga, T. Suzuki, and N. Ikeda, “Status of MSBS Study at NAL,” 3rd Int‘l Symposium on Magnetic Suspension and Balance Symposium on Magnetic Suspension and Technology, Tallahassee, Florida, December 13-15, 1995.
[43] N. J. Groom, “Analytical Model of a Five Degree of Freedom Magnetic Suspension and Positioning System,” NASA Technical Memorandum 100671, March 1989.
[44] C. E. Lin and H. L. Jou, “Model Attitude Control for Magnetic Suspension Wind Tunnel”, Proceedings of the National Science Council, Part A., Vol. 21, No. 3, pp. 222-232, May 1997,
[45] C. E. Lin and C. K. Yang, “Force and Moment Calibration for NCKU 10 cm x 10cm Magnetic Suspension Wind Tunnel”, Proceedings of the National Science Council, Part A., Vol. 21, No. 3, pp. 233-243, May 1997,
[46] F. P. Beer and E. R. Johnston Jr, Vector Mechanics for Engineers- Dynamics, McGraw-Hill Inc., 1990.
[47] R. Siegwart, D. Vischer, R. Larsonner, R. Herzog, A. Traxler, H. Bleuler and G. Schweitzer. “Control Concepts for Active Magnetic Bearings”, International Symposium on Magnetic Suspension Technology, Aug. 19-23, pp.401-421, 1991.
[48] J. Eskins, “Further Investigation into Calibration Techniques for a Magnetic Suspension and Balance System”, NASA CR-178056, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top