(3.236.175.108) 您好!臺灣時間:2021/02/27 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李炯偉
研究生(外文):Chiung-Wei Li
論文名稱:由交集觀點探討二維向量式資料基本位相關係模組之建立
論文名稱(外文):A Primitive Topological Relation Module for 2-D Vector Data:An Intersection Perspective
指導教授:洪榮宏洪榮宏引用關係
指導教授(外文):Jung-Hong Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量工程學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:119
中文關鍵詞:空間資料庫位相關係模組交集性質階層組織
外文關鍵詞:spatial databasetopological relation modulegeometric intersectionhierarchical organization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在空間資料庫中,位相空間關係可作為使用者空間資料查詢的約制條件,它提供使用者類似自然語言的語句來描述空間現象,作為與空間資料溝通的途徑。人類對空間關係的應用是一種基本的空間知識。例如:找出台灣省內所有『包含』紅樹林保護區的縣分有哪些等問題,『包含』即為一位相空間關係。目前的系統往往侷限於其特定的架構,而造成使用者與電腦溝通上的困難及訓練的增加。本論文主要目標是發展一個提供使用者以其具有的空間概念表達空間查詢需求,並可轉換為空間資料庫內部相對應空間操作之位相關係模組。
研究中藉由考量人類對位相關係的空間認知之判斷,以向量式資料為基礎,分析不同維度空間物體間交集情形之特定交集性質,歸納並定義出一組具語意概念的基本位相關係及其相應的演算法,利用該組以計算為基礎(quantitative-based)的基本位相關係,嘗試以它來描述存在於二維空間平面上的空間物體間之位相關係。最後可以使用者的空間思考為基礎,透過基本位相關係的組合來描述存在於多個物體間較為複雜的位相關係。為了提昇位相關係模組運作的效率,空間資料間的階層組織特性也被納入於位相關係模組推論機制之設計,以輔助不同階層關係間空間物體的位相關係之判斷。
本研究之目標為發展語句文字描述式之位相關係模組,研究顯示(一)經由分析向量式資料交集的情形,以四種基本的幾何演算法實行兩物體間的基本位相關係是可行的。(二)較複雜狀況的位相關係可由基本位相關係的邏輯組合加以描述與解釋。(三)明確記錄空間資料的階層關係,可增進位相關係模組運作之效率,快速地排除不必要的幾何測試。

Topological relations are often used to represent constraints for spatial queries in spatial databases. It provides us a way to communicate human with spatial data in a qualitative and natural language format we use in our daily lives. Spatial relation is a part of human’s spatial knowledge. For example , a topological relation “contain” is used in the query of “find out all countries which contain mangrove conservation area in Taiwan” to express our needs regarding spatial data. Currently commercial systems are often restricted to their specific functions , so that the communication between users and systems is difficult and training is a must. The goal of our thesis is to develop a topological relation module that allows users to present spatial queries needs with his or her spatial cognitive understanding , and later translate them into quantitative-based operations to derived request information.
In this research , by incorporating the fundamentals of humans spatial cognition , we analyze specific geometric intersections between two different-dimensional spatial objects in vector data format , and develop a set of primitive topological relations with unique semantic and geometric meanings , along with their respective algorithms. We can thus determine the topological relations between two objects in 2-D space with this quantitative-based approach. Based on the spatial thinking of humans , we can further describe more complex situations among multiple objects by combining various primitive topological relations. To improve the efficiency of the topological relation module , hierarchical organizations among spatial objects are also considered in the design of the reasoning mechanism for the module.
The goal of our research is to build a quantitative-based topological relation module that allows users to interact with GIS systems with already familiar qualitative , natural language-like topological relations. The result of our research shows that , firstly , the conceptual design and the implementation of the primitive topological relation module in computers is possible , secondly , more complex topological situations can be described and explained with logical combination of the proposed primitive topological relations , finally , explicitly stored hierarchical organization of spatial data can improve the efficiency of the module during query processing by quickly excluding unnecessary test.

中文摘要……………………………………………………………….Ⅰ
英文摘要……………………………………………………………….Ⅱ
致謝…………………………………………………………………….Ⅳ
目錄………………………………………………………………….…Ⅴ
表目錄……………………………………………………………….….Ⅶ
圖目錄…………………………………………………………………..Ⅸ
第一章 緒論……………………………………………………………1
§1-1 研究背景與動機………………………………………………...1
§1-2 研究方法與流程……………………………………………...…2
§1-3 論文組織………………………………………………………...6
第二章 位相關係的相關理論探討……………………………………7
§2-1 位相關係的模式化及其應用…………………………………...8
§2-2 位相關係模式化的理論回顧……………………………….…11
§2-2-1 Point-Set理論………………………………………….11
§2-2-2 Order理論……………………………………………...19
§2-2-3 Formal Logic理論……………………………………..21
§2-2-4 Image-Schemata理論………………………………….22
§2-2-5 運用空間資料庫技術的方法………………………...23
§2-3 位相關係模式化的考量準則………………………………….25
第三章 基本位相關係模組之建立…………………………………..27
§3-1 基本位相關係的定義……………………………………….…27
§3-1-1 點、線段、面空間資料型態的定義…………………..27
§3-1-2 以交集觀點分析基本位相關係……………………...28
§3-1-3 基本位相關係的交集性質之討論………………...…37
§3-2基本位相關係的分析…………………………………………..41
§3-2-1 基本位相關係的性質………………………………...41
§3-2-2 基本位相關係與位相關係模組之建立...……………43
§3-3 基本位相關係的演算法設計………………………………….44
§3-3-1 目前幾何演算法所面臨的問題…………………...…44
§3-3-2 基本位相關係之幾何配置分析……………………...45
§3-3-3 基本位相關係演算法的建立………………………...48
§3-4 增進實行效率的考量………………………………………….51
§3-5 結論…………………………………………………………….53
第四章 組合物體的位相關係………………………………………..60
§4-1 折線物體與基本物體間的位相關係………………………….61
§4-2 組合物體的位相關係………………………………………….73
§4-2-1 組合物體的位相關係分析與定義………...…………74
§4-2-2 組合物體與基本物體間之位相關係舉例…...………78
§4-3 空間物體的階層關係及其間的位相關係……………………82
§4-3-1 空間物體的階層關係以其應用……………………...82
§4-3-2 根據地理資料階層關係的位相關係推理…………...83
第五章 位相關係模組之測試與分析………………………………..98
§5-1 位相關係模組之架構………………………………………….98
§5-2 基本位相關係之測試…………………………………...……103
§5-3 組合物體位相關係之測試…………………...………………107
§5-4 階層關係於位相關係推演之應用…………………………...109
第六章 結論與建議…………………………………………...…….112
參考文獻…..………….……………………………………………….114

1. 洪榮宏(1998),地理資料之空間關係及其於人機介面上之應用,第十七屆測量學術及應用研討會,1998年9月,台南成功大學,pp.1100-1109
2. Bittner,T.(1997),A Qualitative Coordinate Language of Location of Figures within the Ground(COSIT’97),LNCS 1329,pp.223-240
3. Clarke,B.L.(1981),A Calculus of Individuals Based on Connection,Notre Dame Journal of Formal Logic,Vol.22,pp.204-218
4. Clomley,R.(1992),Digital Cartography,Prentice-Hall,Englewood Ciffs,New Jersey.
5. Cui,Z.,Cohn,A.G.&Randell,D.A.(1993),Qualitative and Topological Relationships in spatial databases,LCNS 692,pp.296-315
6. Clementini,E.,Felice,P.&Oosterom,P.(1993),A Small Set of Formal Topological Relationships Suitable for End-User Interaction(SSD’93),LNCS 692,pp.276-295
7. Clementini,E.&Felice,P.(1993),An Object Calculus for Geographic databases,In ACM Symp. On Applied Computing,pp.302-308
8. Calcinelli,D. and Mainguenaud,M.(1994),Cigales,a Visual Query Language for a Geographical Information System:the User Interface,Journal of Visual Languages and computing,5,pp.113-132
9. Car,A and Frank,A.U.(1994),Modelling a Hierarchy of Space Applied to Large Road Networks,LCNS 884,pp.15-24
10. Clementini,E.&,Felice,P.(1995),A Comparison of Methods for Representing Topological Relationships,Information Science,Vol.3,pp.149-178
11. Cohn,A.G. and Gotts,N.M.(1996),The Egg-Yolk Representation of Regions with Indeterminate Boundaries,In:Geographic Objects with Indeterminate Boundaries:GISDATA 2(Edited by Burrough,P.A. and Andrew,A.U.),Taylor&Francis,London,pp.171-187
12. Egenhofer,M.J.,Frank,A.,Jackson,J.P.(1989),A Topological Model for Spatial Databases(SSD’89),LNCS 409,pp.271-286
13. Egenhofer,M.J.&Herring,J.(1990),A Mathematical Framework for the Definition of Topological Relationships,Proc. of the 4th Int. Symp. On Spatial Data Handling,pp.803-813
14. Egenhofer,M.J.(1991),Reasoning about Binary Topological Relations,LNCS 525,pp.143-160
15. Egenhofer,M.J.and Herring,J.(1991),High-Level Spatial Data Structure for GIS,In:Geographic Information Systems:Principle and Application,(Maguire,D.,Rhind,D. and Goodchild,M. eds),Longman,London,pp.227-237
16. Egenhofer,M.J.&Franzosa,R.D.(1991),Point-Set Topological Spatial Relations,IJGIS,Vol.5,No.2,pp.161-174
17. Egenhofer,M.J.,&Herring,J.(1992),Categorizing Binary Topological Relationships between Regions,Lines,Points in Geographic Databases,Technical Report,Department of Surveying Engineering,University of Maine,Orono,ME
18. Egenhofer,M.J.&Sharma,J.(1993),A Critical Comparison of the 4-Intersection and 9-Intersection Models for Spatial Relations:Formal Analysis,AutoCarto 11,pp.1-11
19. Egenhofer,M.J.(1994a),Deriving the composition of binary topological relations,Journal of Visual Language and Computing,Vol.5,pp.133-149
20. Egenhofer,M.J.(1994b),Spatial SQL:A Query and Presentation Language,IEEE Transactions on Knowledge and Data Engineering,Vol.6,No.1,pp.86-95
21. Egenhofer(1994c),Pre-Processing Queries with Spatial Constraint,PE&RS,Vol.60,No.6,pp.783-790
22. Egenhofer,M.J.&Franzosa,R.D.(1995),On the Equivalence of Topological Relations,IJGIS,Vol.9,No.2,pp.133-152
23. Egenhofer,M.J.&Mark,D.(1995)Naive Geography(COSIT’95),LNCS 988,pp.1-15
24. Egenhofer(1997),Querying Processing in Spatial-Query-by-Sketch,Journal of Visual Languages and Computing,8,pp.403-424
25. Freeman,J.(1975),The Modelling of Spatial Relations,Computer Graphics and Image Processing,Vol.4,pp.156-171
26. Frank,A.(1982),MAPQUERY:Data Base Query Language for Retrieval of Geometric Data and their Graphical Representation,Computer Graphics,Vol.6,pp.199-207
27. Frank ,A.&Kuhn,W.(1986),Cell Graphs:A Provable Correct Method for the Storage of Geometry,Proc. of the 3rd Int. Symp. On Spatial Data Handling,pp.411-436
28. Frank,A.U.(1991),Properties of Geographic Data:Requirements for Spatial Access Methods(SSD’91),LNCS 525,pp.225-234
29. Frank,A.U. and Mark,D.M.(1991),Language issues for GIS,In:Geographic Information Systems:Principle and Applications(Maguire,D.,Rhind,D. and Goodchild,M. eds),Longman,London,pp.147-163
30. Frank,A.U.(1992),Qualitative Spatial Reasoning about Distances and Directions in Geographic Space,Journal of Visual Languages and Computing,Vol.3,pp.343-371
31. Frank,A.U.(1993),The Use of Geographic Information System:The User Interface is The Syetem,Human Factors in Geographic Information System,Belhaven,London,pp.3-14
32. Frank,A.U. and Timpf S.(1994),Multiple Representations For Cartographic Objects In A Multi-Scale TreeAn Intelligence Graphical Zoom,Computer and Graphics Vol.6,No.6 pp.823-829
33. Greene,D. and Tao,F.(1986),Finite Resolution Computational Geometry,Proceedings of the 27th IEEE Symposium on the Foundations of Computer Science,New York:IEEE,pp.143-152
34. Greasley,Lan(1988),Data Structures to Organize Spatial Subdivisions,ACSM-ASPRS 1988,Vol.6,pp.139-148
35. Gutting,R.H.(1988),Geo-Relational Algebra:A Model and Query Language for Geometric Database Systems,Proc. of the Int. Conf. On Extending Database Technology,pp.506-527
36. Huang(1998),Spatial Range Queries Using Traces,IJGIS,Vol.12,No. 6,pp.561-577
37. Kainz,W.(1989),Order,Topology,and Metric in GIS,ASPRS/ACSM,Vol.4,pp.154-160
38. Kriegel,H.P.et al.(1991),The Combination of Spatial Access Methods and Computational Geometry in Geographic Database Systems(SSD’91),LNCS 525,pp.5-21
39. Kerr,R.(1991),SPARQ:Spatial Relationship Query Based on Spatial Decomposition,Computer and Graphics,Vol.15,No.2,pp.267-284
40. Kainz,W.et al.(1993),Modelling Spatial Relations and Operations with Partially Order Sets,IJGIS,Vol.7,No.3,pp.215-229
41. Lakoff,G. and Johnon,M.(1980),Metaphors We Live By,The University of Chicago Press,Chicago
42. Laruini,R.(1989),Solving Spatial Queries By Relational Algebra,AutoCarto 9,pp.426-435
43. Laurini,R. and Thompson,D.(1992),Fundamentals of Spatial Information Systems,Academic Press,London
44. Lee,Y.C.(1995),An iconic query language for topological relationships in GIS,IJGIS,Vol.9,No.1,pp.25-46
45. Mark,D.(1989),Cognitive Image-Schemata for Geographic Information:Relation to User Views and GIS Interfaces:in GIS/LIS’89,Vol.2,pp.551-560
46. Mark,D.andGould,M.D.(1991),Interacting With Geographic Information:A Commentary,PE&RS,Vol.57,No.11,pp.1427-1430
47. Mark,D.&Egenhofer,M.J.(1994),Modeling Spatial Relations Between Lines and Regions:Combining Formal Mathematical Models and Human Subjects Testing,Cartography and Geographic Information Systems,Vol.4,No.4,pp.195-212
48. Mark,D.et al.(1995),Evaluating and Refining Computational Models of Spatial Relations Through Cross-Linguistic Human-Subjects Testing(COSIT’95),LNCS 988,pp.553-568
49. O’Rourke,J.(1994),Computational Geometry in C,Cambridge University Press.,Cambridge
50. Preparata,F.P. and Shamos,M.J.(1985),Computational Geometry:An Introduction,Springer-Verlag,Berlin
51. Papadias,D. and Egenhofer, M.J.(1996),Hierarchical Reasoning about Direction Relations,Proc. of the 4th ACM Workshop on GIS,1996
52. Papadias ,D. and Theodoridis, Y.(1997),Spatial Relation,Minimum Bounding Rectangles, and Spatial Data Structure,IJGIS,Vol.11,No.2,pp.111-138
53. Roessel,J.W.(1987),Design of A Spatial Data Structure Using the Relational Normal Forms,IJGIS,Vol.1,No.1,pp.33-50
54. Roussopoulos,N.et al.(1988),An Efficient Pictorial Database System for PSQL,IEEEE on Transactions Software Engineering,Vol.14,No.5,pp.639-650
55. Randell,D.A.et al.(1992),A Spatial Logic based on Regions and Connection,Proc. 3rd Int. conf. On knowledge Representation and Reasoning,pp.165-176
56. Rodriguez,M.A.&Egenhofer,M.J.(1997),Image-Schemata-Based Spatial Inferences:The Container-Surface Algebra,LNCS 1329,pp.35-52
57. Smith,T.R.&Park,K.K.(1992),Algebraic Approach to Spatial Reasoning,IJGIS,Vol.6,No.3,pp.177-192
58. Shneider,M.(1997),Spatial Data Type for Database Systems:Finite Resolution Geometry for GIS,LCNS 1288,Springer-Verlag,Berlin
59. Stefanakis,E. and Sellis, T.(1998),Enhancing Operations with Spatial Access Methods in a Database Management System for GIS,Cartography and Geographic Information Systems,Vol.25,No.1,pp.16-32
60. Shariff,B.M.,Egenhofer,M.J.&Mark,D.(1998),Natural-Language spatial relations between linear and area object:the topology and metric of English-language terms,IJGIS,Vol.12,No.3,pp.215-245
61. Timpf,S. and Frank,A.U.(1995),Using Hierarchical Spatial Data Structures for Hierarchical Reasoning,LNCS 1329,pp.69-83
62. Worboy,M.F.(1995),GIS:A Computing Perspective,Taylor & Francis,London

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔