跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林敬順
研究生(外文):Jing-Shun Lin
論文名稱:三維腦血管影像偵測與顯示之電腦視覺系統
論文名稱(外文):Computer Visualization System for 3-D Cerebral Vessel Images
指導教授:孫永年孫永年引用關係
指導教授(外文):Yung-Nien Sun
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:94
中文關鍵詞:追溯海膽模型能量函數最大亮度投射滑動盒子MIP表面描繪模式透射投影顯示
外文關鍵詞:TrackingUrchin ModelEnergy FunctionMIP(Maximum-Intensity Project)Sliding Box MIPSurface RenderingRay Casting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著社會的變遷與交通事故所造成的頭部疾病與損傷有增加的趨勢,因此提高腦部病狀診治的水準有極迫切的必要。提供一個有效的影像視覺系統將腦血管醫學影像偵測出來並以立體成像的方式呈現出來,將能方便有效地協助醫師的診斷。
本論文的重點是在MRA影像中,以腦血管追溯(Tracking)的演算法來將腦血管偵測出來,並且利用多種的立體成像的技術,將追溯出來的腦血管體積資料,依據不同的需求,作三維的立體成像,藉此瞭解腦部血液的流動是否順暢正常,腦血管是否有發生病變現象的產生。
在三維腦血管的重構中我們利用一個模擬Urchin(海膽)的腦血管追溯模型,以可調節的模型為基礎的演算法(Adaptive Model-based Tracking Algorithm), 來Tracking出腦血管的區域,並提出一些法則及技巧將部份原先該連續卻因為雜訊的存在而分斷的腦血管給連接起來。
在腦血管三維立體成像方面,我們採用了多種立體顯示的方法,包括最大亮度顯示(MIP),滑動盒子MIP,投射投影顯示及表面描繪法(Surface Rendering)等,藉以多種的顯像方式,來協助醫生以方便的方式,觀察病患的三維診斷影像。
最後,本系統以實際的病例資料進行實驗及顯示,以模擬整個處理過程,同時展現優良的人機介面與操作技巧。

In recent years, the population increase in aging society, traffic and factory accidents increases the numbers of cases in brain diseases and damages. Therefore, the quality for brain diagnosis is emphasized urgently. A system providing effective vessel tracking and visualization is essential for physicians to diagnose brain diseases.
This thesis covers two main subjects . The first one is to track the brain vessels in MRA images. The second one is to visualize the 3D vessel data by use of various display techniques. The results of tracking and visualization are helpful to analyze and observe whether the blood vessel is morphologically normal or not.
In the method to reconstruct the three-dimensional vessels, we simulate the urchin model and used an adaptive tracking algorithm to track the vessel region. Some rules and techniques are also provided to remove the noises to connect the broken vessels.
In the three-dimensional display method, we apply various display techniques, including Maximum intensity projection (MIP), Sliding-box MIP, Ray-casting display and Surface rendering, for visualization. These display results help the physicians to observe the patient’s 3D image data in an efficient manner.
Finally, some real cases with patients’ data are used to test in our experiments and demonstration. Experiments show that our system provides a nice tool with good man-machine interface for vessel tracking and visualization.

中文摘要………………………………………………………………i
英文摘要………………………………………………………………iii
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………ix
第一章 簡介……………………………………………………………1
1.1 研究動機與目的………………………………………………1
1.2 系統簡述與論文架構…………………………………………2
第二章 三維腦血管的偵測……………………………………………4
2.1 影像的取得……………………………………………………8
2.2 整體架構………………………………………………………9
2.3 Seed 的給定方式……………………………………………11
2.4 追溯腦血管的流程與原理……………………………………13
2.4.1 海膽模型的結構……………………………………………17
2.4.2 刺針的定義…………………………………………………17
2.4.3 繁衍刺針偵測停止的條件…………………………………19
2.4.4 腦血管管壁的偵測…………………………………………20
2.4.5 中心點的衍生………………………………………………24
2.4.6 中心點的移位………………………………………………27
2.4.7 分支的判斷…………………………………………………30
2.5 兩中心點的內插………………………………………………34
2.6 腦血管的連接…………………………………………………37
第三章 腦血管的立體顯示……………………………………………40
3.1 幾何轉換 — 三維空間………………………………………43
3.1.1 平移(Translation)……………………………………44
3.1.2 比例調整(Scaling)……………………………………45
3.1.3 旋轉(Rotation)…………………………………………47
3.2 影像的內插……………………………………………………48
3.3 Phong;s Shading Model………………………………………49
3.4 體積描繪模式…………………………………………………50
3.4.1 最大亮度投影法(MIP)……………………………………51
3.4.2 滑動盒子MIP(Sliding Box MIP)…………………………52
3.4.3 透射投影顯示(Ray Casting)……………………………56
3.5 表面描繪模式(Surface Rendering)………………………58
第四章 實驗結果與討論…………………………………………………65
4.1 MRA腦血管重構的分析實驗……………………………………66
4.1.1 腦血管連接的結果…………………………………………67
4.1.2 腦血管管壁偵測的結果……………………………………69
4.1.3 中心點的內插結果…………………………………………71
4.1.4 腦血管追溯後的結果………………………………………71
4.1.5 腦血管追溯的討論…………………………………………75
4.2 MIP 與立體影像顯示之結果與討論…………………………79
4.3 系統的介面……………………………………………………82
第五章 結論與未來發展………………………………………………85
參考文獻………………………………………………………………88
附錄一 系統操作簡介 ………………………………………………92

[1] T.N. Pappas and J.S.Lim, ”A new method for estimation of coronary artery dimensions in angiogrmas,” IEEE Trans. Acoust. Speech, Signal Processing, vol. 36, pp. 1501-1512, Sept. 1998
[2] P.H. Eichel, E.J. Delp, K. Koral,and A,J, Buda, “ A method for a fully automatic definition of coronary arterial edges from cineangiograms,” IEEE Trans. Med. Imag., vol. 7, pp. 313-319, Dec. 1988
[3] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Coldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imag., vol. 8, pp. 263 — 269, Sept. 1989
[4] Y. Sun, “Automated Identification of vessel Contours in Coronary Arteriogrmas by an Adaptive Tracking Algorithm,” IEEE Trans. Med. Imag, vol. 8,pp. 79-87, Mar 1989
[5] F. Miles and A. Nutall, “Matched filtering estimation of serial blood vessel diameters from video images,” IEEE Trans. Med. Imag., vol. 12, pp. 147-152, June 1993
[6] L.Zhou, S.Rzeszotarski, L. Singerman, and J. Chokreff, “The detection and quantification of retinopathy using digital angiograms,” IEEE Trans. Med. Imag., vol. 13, pp. 619-626, Dec. 1994
[7] M. A. T. Figuereido and J. M. N. Leitao, “A nonsmothing approach to the estimation of vessel contours in angiograms,” IEEE Trans. Med. Imag., vol. 14, pp. 162-172, Mar. 1995
[8] Y. Sun, R. J. Luciarello, and S. A. Chiaramida , “Directional low-pass filtering for improving accuracy and reproducibility of stenosis quantification in coronary arterigrams,” IEEE Trans. Med. Imag., vol. 14, pp. 242-248, June 1995
[9] William E. Higgins, Wolfgang J. T. Spyra, Ronald A. Karwoski, and Erik L. Ritman, “System for Analyzing High-Resoluction Three-Dimensional Coronary Angirgrms,” IEEE Trans. Med. Imag, vol. 15 , NO. 3 , June 1996
[10] J. Y. Lee, C. H. Chen, J. M. Tasai, Y. N. Sun and C. W. Mao, “ 3-D Image Reconstruction of Brain Vessels from Angiograms,”IEEE TENCON-Digotal Signal Processing Applications” pp 547-552 1996
[11] K. Kitamura, Jonathan M. Tobis, and J. Sklansky, “Estimating the 3-D Skeletons and Transverse Area of Cprpmary Arteries from Bipline Angiograms,” IEEE Trans MED. Imag , vol. 7. NO. 3. SEPTEMBER 1988
[12] C. Pellot, A. Herment, M. Sigelle, P. Horain , H. Maitre and P. Peronneau,”A 3D Reconstruction of Vascular Structures from Two X-Ray Angiograms Using an adpated Simulated Annealing Algorithm”, IEEE Trans. Med. Imag , vol. 13 NO. 1. Mar. 1994
[13] Q. Huang. G. C. Stockman, “ Model-based automatic recognition of blood vessels from MR Images and its 3D visualization,” IEEE pp,691-695,1994
[14] K. Krissian, G. Malandain, N. Ayache, “ Model Based Multiscale Dection of 3D Vessels,” IEEE , pp. 202-210, 1998
[15] 陳福政,”Medical Image Analysis, Fusion and Display for Multi-Modality Brain Images,” 國立成功大學資訊工程研究所,碩士論文,八十七學年度.
[16] J. S. Lee, Y. N. Sun and C. H. chen ,”Gray-Level-Based corner detection by using wavelet transfrom,”IEEE TENCON 1993
[17] A. Munteanu, J. Cornelis, P. De Mutnck, A. Vezerianos, P. Cristea,”Accurate Decection of Coronary Arteries with the Continuous Wavelet Transform”,IEEE Computers in Cardiology vol. 24. pp.602-605 1997
[18] F. Ulupinar and R. Nevatia, “Shape from Contour: Straight Homogeneous Generalized Cylinders and Constant Cross Section Generalized Cylinders,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE vol. 17 , NO. 2. Mar 1995
[19] M. Zerroug, “Three-Dimensional Descriptions Based on the Analysis of the Invariant and Quasi-Invariant Properties of Some Curved-Axis Generalized Cylinders,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE vol. 18 , NO. 3. Mar 1996
[20] Sebbahi, A . Herment , A. Decesare and E. Mousseaux, “Multimodality Cardiovascular Image Segmentation Using a Deformable contour model,”Computerized Medical imaging and Graphics, vol, 21 NO 2 , pp 79-89 ,1997
[21] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contou models,”Int. J. Comput. Vision, pp. 321-331, 1998
[22] S. Schreiner, Robert L. Galloway, “ A Fast Maximum-Intensity Porject Algorithm for Generating Magnetic Resonance Angiogerams,” IEEE Trans. Med. Imag, vol. 12, NO 1, pp. 50-57, Mar. 1993
[23] K. J. Zuiderveld, A. H. J. Koning, M. A. Viergever, “Techniques for speeding up high-quality persepctive Maximum Intensity Projection,” Pattern Recognition Letters. Pp. 507-517. 1994
[24] S.Schreiner, B. M. Dawant, C. B. Paschal, and R. L. Galloway, “The Imporyance of Ray Pathlengths when Measuring Objects in Maximum Intensity Projection Images,” IEEE Trans Med. Imag, vol. 15, NO 4, August 1996
[25] M. Levoy, “Volume Rendering-Display of Surfaces from Volume data”,IEEE ,pp. 29-38 May 1988.
[26] M. Magnusson, R. Lenz and P. E. Danielsson,”Evaluation of methods for shaded surface display of CT — volumes”,IEEE 1988
[27] 楊育豪, “The 3-D Vision System for Volume Rendering and Segmentation of Human Coxal Bone,”國立成功大學資訊工程研究所,碩士論文,八十三學年度.
[28] E. Artzy, G. Frieder, and Gabor T. Herman, “The Theory, Desugn, Implementation and Evaluation of Three-Dimensional Surface detection algorithm,” Computer Graphics and Image Processing 15, 1-24, 1981
[29] D. Gordon and J. K. Udupa, “Fast Surface Tracking in Three-Dimensional Binary Images,”CVGIP 45, 196-214,1989
[30] W. E. Lorensen and H. E. Cline,”Marching Cube:A High Resolution 3D Surface Construction Algorithm,”Computer Graphics, Vol.21,NO 4, July 1987
[31] 邱仲淵,”3-D Display and Image Fusion System — for CT and MR Images of Coxal Bone”, 國立成功大學資訊工程研究所,碩士論文,八十五學年度.
[32] 王世蕊,”3-D Image Display and Measurement for Fetal Ultrasound”, 國立成功大學資訊工程研究所,碩士論文,八十七學年度.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top