跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈璋
研究生(外文):Ying-Zhang Chen
論文名稱:以原子層磊晶法研製ZnS/ZnSe應力層超晶格之光電特性
論文名稱(外文):The electrical and optical properties of ZnS/ZnSe strained-layer superlattice by Atomic Layer Epitaxy
指導教授:橫山明聰
指導教授(外文):Meiso Yokoyama
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:36
中文關鍵詞:原子層磊晶法超晶格硫化鋅硒化鋅
外文關鍵詞:ALEsuperlatticeZnSZnSe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們將討論硫化鋅/硒化鋅之應力層超晶格結構成長於矽上之光電特性,並探討超晶格應用於電激發光元件之適用性。此應力層超晶格成長於N型(100)矽上,成長方式為原子層磊晶法,以雙甲基化鋅、硫化氫、硒化氫為反應物操作於改裝的水平式、低壓有機金屬汽相沉積系統。
由二次離子質譜儀量測中,可觀察到超晶格結構層中的原子波動變化分佈,可確認該結構之形成。我們以I-V量測檢測超晶格蕭特基二極體之電特性。可發現至少需16週(厚度1600 A)的超晶格結構方可有低至0.52伏特之切入電壓的特性展現。
我們將硫化鋅摻雜銩(ZnS:Tm)之發光層沈積在超晶格/矽上並討論超晶格擔任發光層之緩衝層之適用性。藉由室溫下光激發光光譜之測試得知,與可比較厚度下之硒化鋅緩衝層相較,光譜中於4000A之非理想激發己被抑止。
總結而言,應力層超晶格結構頗適於擔任電激發光元件之電荷傳輸層及緩衝層。

In this dissertation, we will discuss the effects and roles of ZnS/ZnSe strained-layer superlattices (SLSs) for introducing it into the Electroluminescent devices. The SLSs layer is grown on n-type silicon by Atomic Layer Epitaxy (ALE) which modified in a low pressure, horizontal-type, MOCVD system using dimethylzinc, hydrogen sulphide and hydrogen selenide as the reactants.
The formation of SLSs structure is evident from the altering behavior of each fluctuation profile by SIMS. The electrical property of SLSs schottky diode is investigated by current-voltage measurement. It is found that at least 16 periods of ZnS/ZnSe (1600 A) will represent as low cut-in voltage as 0.52V.
ZnS:Tm phosphor layer is deposited on SLSs/Si and discuss the role of SLSs as a buffer layer. Under photoluminescence spectra performed at room temperature, an unnecessary peak around 4000A is suppressed while compare it with one which have a ZnSe buffer layer with comparable thickness.
All this point out the appropriateness of SLSs as an electron-transmission layer and buffer layer in Electroluminescent devices.

Content
Abstract (in Chinese)........................................I
Abstract (in English)........................................II
Acknowledgement..........................................III
Content...............................................................IV
Table Captions..................................................VI
Figure Cations..................................................VII
Chapter 1 Introduction...........................................................1
1-1The history and advantages of
the atomic layer epitaxy.........................................................2
1-1-1The history of ALE................................................................2
1-1-2The advantages of ALE.........................................................3
1-2The choice of substrates.........................................................4
1-3The application of superlattice...............................................4
1-4Summary of this thesis...........................................................5
Chapter 2 System growth processes and
Related apparatus..............................................7
2-1ALE growth processes...........................................................7
2-2RF sputtering growth processes.............................................9
2-3Optical measurements..........................................................10
2-4Electrical measurements......................................................11
2-5Composition analysis...........................................................11
Chapter 3 System description.........................................12
3-1 The atomic layer epitaxy system.........................................12
3-2 The RF sputtering system....................................................14
Chapter 4 Experimental procedure............................16
4-1 Substrate preparation...........................................................16
4-2 ALE Growth procedure.......................................................17
4-3 Wet etching..........................................................................18
4-4 Sputtering growth procedure...............................................18
Chapter 5 The characteristics of ZnS/ZnSe superlattice and phosphor layer...........20
5-1 The epitaxy growth of ZnS and ZnSe on silicon.................20
5-2 Determination and optimization
of growth condition..............................................................21
5-2-1Mole flow rate of DMZn.....................................................21
5-2-2Mole flow rate of H2S and H2Se..........................................21
5-2-3Substrate temperature..........................................................22
5-2-4Digital growth in nature.......................................................23
5-3 The growth of ZnS/ZnSe Strained-layer superlatice...........24
5-4 Experimental growth of SLSs..............................................24
5-5 Electrical property of SLSs..................................................25
5-5-1The schottky diodes of SLSs and ZnSe...............................26
5-5-2The forward I-V characteristic of schottky barrier..............27
5-6 The optical property of the phosphor-layer
with ZnSe and SLSs as buffer layers...................................28
5-7 The characteristics of ZnS:Tb,F phosphor layer..................30
5-7-1CIE measurement.................................................................30
5-7-2DC-Electroluminescent Device fabrication.........................31
5-7-3Composition of phosphor layer...........................................31
Chapter 6 Conclusions and Future work................32
References......................................................................................34
Autobiography
Copyright authorization

[1] C. D. Lee, B. K. Kim, J. C. G. 138(1994) 136-139, “Thickness dependent properties of ZnSe on (100)GaAs grown by atomic layer epitaxy”
[2] Takafumi Yao, T. Takeda et. al., A. P. L. 48(1986)615, “Photoluminescence properties of ZnSe single crystalline films grown by atomic layer epitaxy”
[3] A. Yoshikawa, T. Okamoto et. al.; J. Crys. Growth 101(1990) p86, “MBE-like and CVD-like atomic layer epitaxy of ZnSe in MOMBE system”
[4] N. Shibata and Akinori Katsui, J. C. G. 101(1990)91-95, “Monolayer epitaxy of ZnSe on GaAs substrates by allternating adsorption of diethyzinc and hydrogenselenide”
[5] Adolph Hunter et. al., Jou. Crys. Growth 91(1988) p.111, “A novel atmospheric pressure technique for deposition of ZnS by ALE using DMZn”
[6] Ishwara Bhat, Salman Akram J. C. G. 138(1994)127-130, “Atomic layer epitaxial growth studies of ZnSe using dimethylzinc and hydrogen selenide”
[7] R. Tsu and L. Esaki, Appl. Phys. Lett., vol. 22, No 11, 1 June 1973, p562.
[8]L. Esaki and L. L. Chang, Physical review letters, v. 33, n 8, p495, August1974. “New Tansport Phenomenon in a Semiconductor Superlattice”
[9]Y. Kuroda et al., J. Appl. Phys. 72(1992)p.3029 “Optical and structural characterizations of ZnSe/ZnSSe superlattices grown by MOCVD”
[10] P. Qin et al., J. Appl. Phys.(1990)68(8)p.4338 “ZnSe-ZnS multiple quantum-well optical bistable device”
[11]M.K. Lee et al., Jpn. J. Appl. Phys. 34(1995)pp.3543 “Blue light emitting diode”
[12] B. J. Wu et al., Appl. Phys. Lett. 68(1996)p.379 “Growth and characterization of II-VI blue light-emitting diodes using short period superlattice”
[13]T. Yokogawa, T. Saitoh and T. Narusawa, Appl. Phys. Lett. (1988)52(2)p.120. “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices”
[14]Katsuhiko Hirabayashi, Haruki Kozawaguchi et. al., Jpn. J. A. P. Vol. 26, No 9, September, 1987, pp. 1472-1476 “Color Electroluminescent Devices Prepared by Metal Organic Chemical Vapor Deposition”
[15]Hideomi Ohnishi and Kenji Okamoto, 1988 International display research conference, “Green-Color EL Device with sputtered ZnS:TbOF thin films”
[16] Chak-Wah Tang, Master thesis of NCKU, 1996 “The study of ZnS/ZnSe strained-layer superlattices and electrical characteristics of ZnSe epilayer by ALE”
[17]Deposition technique for thin film and coating, 1982, pl92.
[18]A. S. Penfold: Thin Solid Film 99(1989) 108.
[19]W. R. Runyan and T. J. Shaffner, “Semiconductor Measurements and Instrumentation”, 2nd Edn.(McGraw-Hill, New York, 1997)p.319-329.
[20]J. JAGER et al., Solid-state Electronics 16(1973)pp.357”Modulation effect by intense hole injection in epitaxial silicon Schottky-barrier-diodes.”
[21]C. B. Duke, J. Vac. Sci. Technol. B 11(4), Jul/Aug 1993 1336-1343 “Twenty years of semiconductor surface and interface structure determination and prediction: The role of the annual conferences on the physics and chemistry of semiconductor interfaces”
[22]Tu-RC et. al., J. A. P., Vol 84, lss5, 1998 pp2866-2870 “The structural and Optical-properties of High-Quality ZnTe Grown on GaAs Using ZnSe/ZnTe Strained Superlattices Buffer Layer”
[23] H. Ohnishi and Y. Hamakawa, Jpn. J. Appl. Phys. Vol. 17, No. 7, July, 1978 pp.1225-1230 “Thin film DC EL Cell of Au/ZnSe:Mn/n-GaAs Hetero-Structure with the threshold voltage of 20V”
[24]Tomoyoshi Mishima et al., J. Appl. Phys. 52(9), Sept. 1981 “Molecular beam epitaxial ZnSe:Mn dc electroluminescent cell with very low threshold voltage”
[25] E. J. Bawolek et. al., Thin Solid Films, 131, 1985, p173-183, “Electrical properties of n-n ZnSe/GaAs heterojunctions”
[26]Dieter K. Schroder, “Semiconductor material and device characterization”, 2nd Edn.(John Wiley & Sons, New York, 1998)p.133-183

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top