(3.237.178.91) 您好!臺灣時間:2021/03/02 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何企偉
研究生(外文):C.W. Ho
論文名稱:多孔矽基板上成長單晶碳化矽薄膜應用於高電壓及高溫元件之研究
論文名稱(外文):Fabrication of Single-Crystalline SiC Films on Porous-Si Substrates for Application in High-Voltage and High-Temperature Devices
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Y.K.Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:95
中文關鍵詞:多孔矽單晶碳化矽高溫高電壓
外文關鍵詞:porous silicon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在矽基板上成長單晶碳化矽之技術結合了碳化矽的優越高溫特性與矽的商業優勢,在開發低價格、大面積的新型高溫電子及光電元件的應用方面,深具潛力。然而由於碳化矽/矽異質接面,在較高的偏壓下會產生一個由碳化矽流向矽基板之大漏電流,並且此漏電流會隨著溫度的升高而加劇,因此傳統的碳化矽/矽異質接面元件並不適合高電壓操作,在許多實際電路的應用方面受到很大的限制。解決這個問題的一個有效方法是將碳化矽元件製作在絕緣基板上,亦即“碳化矽在絕緣體上” (SiC-On-Insulator, SiCOI)之技術。
根據研究指出,多孔矽(porous Si, PS)為高電阻材料,而且其微結構有助於異質磊晶薄膜的成長,因此表面具有多孔矽層的矽基板應是成長碳化矽薄膜之理想的絕緣基板,不僅適合用來發展現階段十分熱門的SiCOI之技術,以改善目前SiCOI技術中異質磊晶層品質不佳與製程複雜且困難之缺點,亦可利用它來製作低漏電流、高操作電壓之碳化矽元件。
本論文擬在多孔矽基板上研製單晶碳化矽薄膜,形成 SiCOI 結構,並將其用來以發展高溫、高操作電壓之碳化矽元件。計畫中,吾人先將矽基板表面以電化學陽極化蝕刻法(Electrochemical Anodization)形成多孔矽層(porous Si),再以快速升溫化學氣相沈積法(Rapid-Thermal-CVD)在多孔矽層上沈積單晶碳化矽(-SiC)薄膜,而後量測此薄膜的材料結構(均勻性、平整性與結晶性)及電特性(電阻係數、載子移動率與載子濃度),以建立單晶碳化矽薄膜之最佳成長條件。論文中,並將以發展出來的“碳化矽/多孔矽”結構為基礎,嘗試製做具有高溫及高電壓操作能力的二極體與光感測器,驗證其應用在SiCOI技術上之功效與提升SiC元件性能之潛力。
由於此論文中將採用市面上價格便宜且容易取得的矽晶片,研發成功後之相關電子產品,應極具市場潛力;將來亦可應用與矽積體電路製程相容之微機電(MEMS)技術,開發結合多孔矽發光元件與碳化矽換能器(SiC transducers)之新一代“特殊用途積體電路”(ASIC),所以本論文極具研究之價值。
Fabrication of SiC devices on Si substrates, which combines the outstanding physical properties of SiC materials with the economic advantages of Si wafers, provides the high potential of developing low-cost and large-area SiC devices for high-temperature applications. However, under higher operation voltages, devices based on SiC/Si heterojunction structures suffer from large leakage current, which flows from SiC films to Si substrates and will be aggravated at a higher temperature. The SiC-On-Insulator (SiCOI) technology (that is, fabricating SiC devices on insulating substrates) is an effective approach to solve the above problem.
According to a number of studies, porous-Si (PS) is not only a high-resistivity material, but also a good substrate for hetero-epitaxial growth of films owing to its porous microstructures. Therefore, Si wafers with PS surface layers are very suitable for use as insulating substrates in the SiCOI technology for the growth of single-crystal SiC films and applications in the development of SiC devices with low leakage current and high operation voltage.
In this paper, we are going to develop a technique for growth of single-crystal SiC films on PS/Si substrates for applications in fabrication of high-temperature and high-voltage SiC devices. SiC films are to be deposited, using a RTCVD system, on the PS layers that are previously formed on the Si substrates by an electrochemical anodization method. Characterization on the structural and electrical properties of the obtained SiC films and SiC/PS structures will be made to achieve an optimal film-growth condition. Furthermore, we try to fabricate high-temperature and high voltage SiC devices on PS substrates, including a SiC p-n junction diode and a SiC p-i-n photodiode, to examine the potential of SiC/PS structures in applications in the SiCOI technology.
Since cheap and easily available Si wafers are to be used, the related electronic products successfully developed in this project are potentially promising in commercial markets. In addition, novel Application-specific integrated-circuits (ASIC’s) merging porous light-emitting devices with high-temperature SiC transducers are expected to be developed by utilizing the Si-compatible micro-mechanical-electro-system (MEMS) technology. The porous SiC photodetectors are expected to have higher quantum efficiency and much lower cost than those of conventional crystalline SiC ones. Hence, this paper is worthy to be studied and carried out.
ch1 前言
ch2 碳化矽的成長與蝕刻系統
ch3 多孔矽的製備
ch4 在不同多孔矽基板上成長碳化矽薄膜之特性研究
ch5 碳化矽PN二極體
ch6 碳化矽MSM結構光導體
ch7 碳化矽p-i-n光二極體
ch8 結論
※參考文獻:
[1] Gary L. Harris, Properties of Silicon Carbide. London, United Kingdom: INSPEC, the Institution of Electrical Engineers, 1995.
[2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdiov, and M. Burns, “Larger-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol.76, no.3, pp.1363-1398, 1994.
[3] B. Casady and R. W. Johnson, “Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review,” Solid-State Electronics, vol.39, no.10, pp.1409-1422, 1996.
[4] A. J. Steckel, J. P. Li, “Epitaxial Growth of -SiC on Si by RTCVD with C3H8 and CH4,” IEEE Trans. on Electron Devices, vol.39, no.1, pp.64-74, 1992.
[5] J. A. Powell, L. G. Matus, and M. A. Kuczmarski, “Growth and characteristics of cubic single-crystal SiC films on Si,” J. Electrochem. Soc., vol.134, no.6, pp.1558-1565, 1987.
[6] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung, “Epitaxial growth and electrical characteristics of -SiC on Si by low-pressure rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol.34, pp. 1447-1450, 1995.
[7] K. Shibahara, T. Saito, S. Nishino, and H. Matsunami, “Fabrication of Inversion-Type n-Channel MOSFET’s Using Cubic-SiC on Si(100),” IEEE Electron Device Lett., vol.7, no.12, pp.692-693, 1986.
[8] K. Furukawa, A. Hatano, A Uemoto, Y. Fujii, K. Nakanishi, M. Shigeta, Akira Suzuki, and S. Nakajima, “Insulated-gate and junction-gate FET’s of CVD-grown -SiC,” IEEE Electron Device Lett., vol.8, pp.48-49, 1987.
[9] G. Kelner, S. Binari, K. Sleger, and H. Kong, “-SiC MESFET’s and Buried-Gate JFET’s,” IEEE Electron Device Lett., vol.8, no.9, pp.428-430, 1987.
[10] K. Kim, S.-D. Choi, and K. L. Wang, “Si heterojunction diodes with a thin -SiC layer prepared with gas layer source molecular beam epitaxy,” Thin Solid Films, vol.225, pp.235-239, 1993.
[11] T. Sugii, T. Ito, Y. Furumura, M. Doki, F. Mieno, and M. Maeda, “-SiC/Si heterojunction bipolar transistors with high current gain,” IEEE Electron Device Lett., vol.9, no.2, pp.87-89, 1988.
[12] M. Mehregany, L. Tong, L. G. Matus, and D. J. Larkin, “Internal Stress and Elastic Modulsus Measurements on Micromachined 3C-SiC Thin Films,” IEEE Trans. on Electron Devices, vol.44, no.1, pp.74-79, 1997.
[13] M. I. Chaudhy, “Electrical Transport properties of crystalline silicon carbide/silicon heterojunction,” IEEE Electron Device Lett., vol.12, pp.670-672, 1991.
[14] Yih, J. P. Li, and A. J. Steckl, “SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition,” IEEE Electron Device Lett., vol.41, no.3, pp.281-286, 1994.
表 C018-3 共 頁 第 頁
[15] J. D. Hwang, Y. K. Fang, K. H. Wu, and S. M. Chou, “Improving Breakdown Voltage of SiC/Si Heterojunction with Graded Structure by Rapid Thermal CVD Technology,” IEEE Trans. Electron Devices, vol.44, no.11, pp.2029-2031, 1997.
[16] K. N. Christian, A. Zorman, and M. Mehregany, “A Novel SiC on Insulator Technology Using Wafer Bonding,” 1997 International Conference on Solid-State Sensors and Actuators, Chicago, 1997, pp.653-656.
[17] L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Elect. Lett., vol.32, no.12, pp.1144-1145, 1996.
[18] R. Ziermann, J. V. Berg, W. Reichert, and E. Obermeier, “A High Temperature Pressure Sensor With -SiC Piezoresistors On SOI Substrates,” 1997 International Conference on Solid-State Sensors and Actuators, Chicago, 1997, pp.1411-1414.
[19] R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., vol.71, no.8, p.R1, 1992.
[20] P Steiner, F. Kozlowski, and W. Lang, “Blue and Green Electroluminescence from a Porous Silicon Device,” IEEE EDL, vol.14, no.7, pp.317-319, 1993.
[21] J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kowk, “Highly sensitive photodetector using porous silicon,” Appl. Phys. Lett., vol.61, no.4, pp.459-461, 1992.
[22] Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, “Formation and Properties of Porous Silicon and Its Application,” J. Electrochem. Soc., vol.122, no.10, pp.1351-1355, 1975.
[23] M. Yamana, N. Kashiwazaki, A. Kinoshita, T Nakano, M. Yamamoto, and C. W. Walton, “Porous Silicon Oxide Layer Formation by the Electrochemical Treatment of a Proous Silicon Layer,” J. Electrochem. Soc., vol.137, pp.2925-1927, 1990.
[24] S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett., vol.49 (3), no.21, pp. 140-142, 1986.
[25] Z. Liu, B. Q. Zong, and Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Film, vol.254, pp.3-6, 1995.
[26] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol.51 (11), no.14, pp. 814-816, 1987.
[27] Y. C. Kao, K. L. Wang, B. J. Wu, T. L. Lin, C. W. Nieh, D. Jamieson, and G. Bai, “Molecular beam epitaxial growth of CoSi2 on porous Si,” Appl. Phys. Lett., vol.51 (22), no.30, pp. 1809-1811, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔