跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文信
研究生(外文):Wen-Hsin Hunag
論文名稱:以有機金屬氣相沈積法成長之砷銻化銦/砷化銦材料特性之研究與砷銻化銦紅外線檢測器之研製
論文名稱(外文):The Growth and Study of InAsSb/InAs Material Characteristic by MOCVD and The Study and Fabrication of InAsSb Infrared Photodetector
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:89
中文關鍵詞:砷銻化銦有機金屬氣相沈積法雙晶X光撓射光檢測器紅外線
外文關鍵詞:InAsSbMOCVDDCXRDPhotodetectorIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以有機金屬氣相磊晶法成長砷銻化銦之異質接面、多層量子井與應力型多層量子井發光二極體結構等,並探討其材料特性。且利用其條件成長製作砷銻化銦/砷化銦光檢測器,並研究改善砷銻化銦/砷化銦光檢測器之效能。詳細探討磊晶成長之條件如:成長溫度、壓力及五族與三族比例等。薄膜成長條件之電及光特性利用雙晶X光撓射、霍爾效應、電流電壓特性曲線與光響應等分析之。
未摻雜砷銻化銦已經成長於p型砷化銦基板上,基板溫度從425度到600度。改變成長材料五族與三族比例去觀察表面狀況可分析對其之影響。基板溫度從425度到600度時,電子載子濃度從1.524x1017 cm-3到5.632x1019 cm-3。電子移動力由霍爾效應可測出其值隨基板溫度增加而減少,反之亦然。基板溫度425度時,電子移動力最大,於77K與300K分別為7826.1 and 5845.2 cm2/V.s,從表面狀況與雙晶X光撓射分析成長薄膜品質。砷銻化銦成長於p型砷化銦之基板上,磊晶最佳成長條件:基板溫度550度、成長壓力150 torr及五族與三族比例 8.59、成長速率為1.5mm/hr、載子濃度4.032 x1019cm-3。砷銻化銦成長於p型砷化銦之基板上,於基板溫度475度磊晶,最佳成長條件:成長壓力150 torr及五族與三族比例11.56、成長速率為1.2mm/hr、載子濃度 5.47 x1017 cm-3。砷銻化銦成長於p型砷化鎵之基板上磊晶最佳成長條件:基板溫度550度、成長壓力150 torr及五族與三族比例21.57、成長速率為1.45mm/hr、載子濃度3.24 x1019 cm-3。
我們已成功磊晶砷銻化銦p-n異質接面、多層量子井。運用已知成長條件,砷銻化銦應力型多層量子井發光二極體結構,可順利成長於p型砷化銦之基板上 透過雙晶X光撓射、STEM與SIMS,可知其磊晶薄膜品質良好。
本論文研究各種披覆材料於砷銻化銦/砷化銦偵測器之光電特性。從電流-電壓量測中,我們發現在砷銻化銦/砷化銦上成長ZnS/native-oxide層或作硫化物處理可以有效地減少漏電流。藉由比較訊號雜訊比與D*值,可知砷銻化銦/砷化銦偵測器在77K表現最佳。此外,量測結果亦顯示作ZnS/native-oxide層披覆的砷銻化銦/砷化銦偵測器具有最佳的訊號雜訊比與D*值。其最大的訊號雜訊比與D*值分別為206.2與1.06’1010 cmHz1/2/W。綜合砷銻化銦/砷化銦檢測器的光電特性之量測結果,可知對砷銻化銦/砷化銦檢測器而言兩層式堆疊的ZnS/native-oxide架構是一種極佳與極合適的披覆層。

This work has focused on MOCVD epitaxial growth and characterization of InAsSb heterostructure, InAsSb MQW and the strained MQW LEDs structure. Then we fabricated the InAsSb/InAs photodetector and improved the performance of detector. The growth conditions, such as growth temperature, pressure and V/Ⅲ ratio, are detailed. Electrical and optical properties of the MOCVD growth epilayers are characterized by Double Crystal X-ray diffraction patterns, Hall measurements, I-V and photo response.
Undoped InAsSb epitaxial layers have been grown on (100) p-type InAs and substrate temperature between 425 to 600 oC and growth pressure150 torr. The mole fraction ratios were varied in order to study the effect on surface morphologies. The 300K electron concentration increased from 1.524x1017 to 5.632x1019 cm-3 when growth temperature changed between 425 and 600oC. The mobility is seen to increase with decreasing growth temperature down to 425oC at which point the highest 77K and 300 K mobility of the material is 7826.1 and 5845.2 cm2/V.s, respectively. From the examinations of surface morphologies and DCXRD. It was found the smooth and mirror like surface can be obtained the optimum growth condition of InAsSb epilayers on (100) InAs substrates at 550oC, 150 torr and V/Ⅲ=8.59 that growth rate is 1.5 mm/hr and the 300K electron concentration is 4.032 x 1019 cm-3. The growth temperature at 475oC, then the optimum growth condition of InAsSb epilayers on (100) p-type InAs substrates are 150 torr, V/Ⅲ=11.56 , the growth rate is 1.2 mm/hr and the 300K electron concentration is 5.47x1017 cm-3. InAsSb epitaxial layers have been grown on (100)p-type GaSb substrates with optimum growth conditions as 550oC, 150 torr and V/Ⅲ=21.57. The 300K electron concentration is 3.24x1019 cm-3 and the growth rate is 1.45 mm/hr.
We had succeeded to grow the InAsSb epi-layer heterostructure, p-n junction and MQW. Now, using these results InAsSb/InAs strained MQW LEDs structure have been grown on lattice-match InAs substrates. From double X?ray diffraction measurements, STEM and SIMS, it is found that good quality crystal films for device of manufacture.
In this thesis, the electrical and optical characteristics of InAsSb/InAs p-n junction photodetectors with various passivation materials have been studied. By the I-V measurement, we found that InAsSb/InAs photodiodes with ZnS/native-oxide treatment or sulfide passivation layer can reduce leakage current effectively. By comparing the signal to noise ratio and specific detectivity (D*), the results indicate that InAsSb/InAs infrared detectors work best at 77 K. Besides, it also indicates that the InAsSb/InAs photodetector with ZnS/native-oxide passivation has the best signal-to-noise ratio and specific detectivity. It's maximum signal to noise ratio and specific detectivity value are about 206.2 and 1.06’1010 cm2/V.s, respectively. By summarizing the results the electrical and the optical characteristics of InAsSb/InAs photodetector, we can conclude that the two-layer stacked ZnS/native-oxide structure is an excellent and suitable passivation for InAsSb/InAs infrared detector.

Contents
Abstract ( in Chinese )
Abstract ( in English )
Acknowledgements
Table and Figure Captions
Chapter 1 Introduction
Chapter 2 MOCVD Growth System, Experimental
Preparations and measurement systems
2.1 Substrate Preparation
2.2 MO and Gas Reactants
2.3 MOCVD Growth System Description
2.3.1 The Gas Handling System
2.3.2 Reactor and Heating System
2.3.3 Automatically Pressure Control (APC) System
2.3.4 Exhaust System
2.4 The Introduction of Fundamental Material
Measurement Systems
2.4.1 DCXRD (Double crystal X-ray diffractometry)
2.4.2 SEM (Scanning electron microscopy) and TEM
(Transmission electron microscopy)
2.4.3 SIMS (Secondary Ion mass spectrometry)
2.4.4 AES (Auger Electron Spectroscopy)
2.4.5 XPS (X-Ray Photoelectron Spectroscopy)
2.4.6 EPMA (Electron probe microanalysis)
2.4.7 Hall effect measurement (the ven der Pauw
technique)
Chapter 3 MOCVD Growth of InAsSb/InAs and
InAsSb/GaSb Heterostructures, Multiple
Quantum Well and LEDs Structure
3.1 Experimental Procedure
3.2 Characteristics of InAs Epilayer Grown on
(100) p-type GaSb and p-type InAs Substrate
3.3 Characteristics of InAsSb Epilayer Grown on
(100) p-type InAs Substrate
3.3.1 InAsSb Epilayer Grown on (100) InAs Substrate
3.3.2 InAsSb Epilayer Grown on (100) GaAs Substrate
3.4 Characteristics of InAsSb Epilayer Grown on
(100) p-type GaSb Substrate
3.5 The Growth of InAsSb/InAs (MQW) on
InAs and GaSb respectively, and InAsSb/GaSb
(MQW) on GaSb
3.6 Doping incorporation by LP-MOCVD for InAsSb
epi-layer on p-type InAs and GaSb substrate
3.7 MOCVD growth for InAsSb/InAs photodiode
Fabrication
3.7.1 Unpassivated Diode
3.7.2 Diode with ZnS Passivation
3.7.3 Diode with Sulfur Passivation
3.7.4 Diode with ZnS/native-oxide Passivation
3.7.5 Diode with ZnS/Sulfur Passivation
3.8 Grown the strained MQW LEDs structure
on (100) p-type InAs Substrate
Chapter 4 The Electrical and Optical Properties of
InAsSb/InAs Photodetectors
4.1 The Electrical Characteristics of InAsSb/InAs
Photodetectors
4.1.1 Current-Voltage (I-V) Measurement at Room
Temperature
4.1.2 Mechanism for Surface Leakage current
4.1.3 Photocurrent Measurement at Room Temperature
4.2 The Optical Characteristics of InAsSb/InAs
Photodetectors
4.2.1 Spectral Response
4.2.2 Specific Detectivity (D*)
Chapter 5 Conclusion and Future Work
Reference
Tables and Figures

[1]. S. N. Smith, C. C. Phillips, R.H. Thomas and R. A .Stradling,
" Interband magneto-optics of InAsSb" ,Semiconduction Sci.
Technol. 7(1992)900-906.
[2]. Hung-der Su , Shou-Zen Chang , Si-Chen Lee and Tai-Ping
Sun , " High temperature InAs infrared detector based on
metal-insulator-semiconductor structure " ,Electron. Lett. ,
31 , 11 , p918 , 1995 .
[3]. L. O. Bubulac , A. M. Andrews , E. R. Gertner and D. T.
Cheung , " Backside-illuminated InAsSb/GaSb broadband
detectors " , Appl. Phys. Lett. , 36 , 9 , p734 , 1980 .
[4].C. H. Grein , J. Appl. Phys. , " Long wavelength InAs/
InGaSb infrared detectors:Optimization of carrier
lifetimes " , 78 , 12 , p7143 , 1995 .
[5]. Y. Zhao , M. J. Jurkovic and W. I. Wang , " Chacterization
of AuGe- and AuTe-Based Ohmic Contacts on InAs n-
Channel High Electron Mobility Transistors " , J.
Electrochem. Soc. , 144 , 3 , p1067 , 1997 .
[6]. A. Verdin , " Gas Analysis Instrumentation " , New York :
Wiley.
[7]. W. Dobbelaere , J. De Boeck , P. Heremans , R. Mertens ,
G. Borghs , W. Luyten and J. Van Landuyt , " InAs p-n
diodes grown on GaAs and GaAs-coated Si by molecular
beam epitaxy " , Appl. Phys. Lett. , 60 , p868 , 1992 .
[8]. W. Dobbelaere ,W. De Raedt , J. De Boeck , R. Mertens
and G. Borghs , " Monolithic integration of InAsphotodiode
and GaAs MESFET " , Electron. Lett. , 28 , p372 , 1992 .
[9]. M. K. Parry and A. Krier, " Room-temperature Cd-diffused
InAsSbP diodes for methane gas detection " , Semicond.
Sci. Technol. , 8 , p1764 , 1993 .
[10]. G. C. Bailey ,Proc. Soc. Photo-opt . Instrum. Engrs , 311 ,
1981.
[11]. C. E. Hurwitz and J. P. Donnelly , " Planar InSb photo-
diodes fabricated by Be and Mg ion implantation " , Solid-
State Electronics , 18 , p753 , 1975 .
[12]. Ilan Bloom and Yael Nemirovsky , " Surface passivation
of backside-illuminated Indium Antimonide focal plane
array " , IEEE Trans. on Electron Device , ED-40 , p309 ,
1993
[13]. F. Capasso and G. F. Williams , " A proposed hydroge-
nation/nitridization passivation mechanism for GaAs and
other III-V semiconductor devices , including InGaAs long
wavelength photodetectors " , J. Electrochem. Soc. , 129 ,
4 , p821 , 1982 .
[14]. Yu. A. Kudryavtsev , E. B. Novikov , N. M. Stus' and E.
I. Chaikina , " Sulfide passivation of InAs surface " , Sov.
Phys. Semicond. , 26 , 10 , p975 , 1992 .
[15]. Mistsuhiro Katayama , Masakazu Aono , Haruhiro Oiga-
wa , Yasuo Nannichi , Hirohiko Sugahara and Masaharu
Oshima , " Surface structure of InAs (001) treated with
(NH4)2SX solution " , Jap. J. Appl. Phys. , 30 , 5A , pL786 ,
1991 .
[16]. G. Eftekhari , " The effect of sulfur passivation and rapid
thermal annealing on the properties of InAs MOS structu-
res with the oxide layer deposited by reactive sputtering " ,
Phys. Stat. Sol. (a) , 161 , p571 , 1997 .
[17]. Dieter K Schroder , "Semiconductor Material and Device
Characerization", Arizona State University Tempe Arizona,
John Wiley & Sons, Inc.1990.
[18].V. Swaminathan and A.T. Macrander , " Materials Aspects of
GaAs and InP Based Structures" , Prentice Hall, Englewood,
Cliffs, New Jersey 1991.
[19]. E. F. Schubert , "Doping in V/Ⅲ semiconductors",
Cambridge studies in semiconductor physics and
microelectronic engineering, 1993.
[20].V. E. Cosslett , "Fifty Years of Instrumental Development of
the Electron Microscope " ,in Advances in Optical and
Electron Microscopy Vol.10 Academic Press San Diego C. A.
1988 p.p.215-267.
[21].W. Dobbelaere, J. De Boeck, M. Van Hove and G. Borghs ,
"Long wavelength InAsSb Dectectors grown on patterned Si
substrates by Molecular Beam Epitaxy ", IEEE IEDM 89-
717.
[22].M. A. Marciniak, R. L. Hengehold and Y. K. Yeo, " Optical
characterization of molecular beam epitaxially grown InAsSb
nearly lattice matched to GaSb" , Jourmal of Applied Physics
Vol. 84 Number 1. 480-488.July 1998.
[23]. J. Singh , "Physics of Semiconductors and Their
Heterostructures, " , John Wiley & Sons, Inc. 1993.
[24].B. Lane, D. Wu, A. Rybaltowski, H.Yi, J. Diaz and M.
Razeghi ,"Compressivelystrained multiple quantum well
InAsSb lasers emitting at 3.6mm grown by metal-orgamic
chemical vapor deposition", Appl.Phys. Lett.70 (4) 27
January 1997.
[25].R.M. Biefeld, SRKurtz, and A.A. Allerman , "The
Metalorganic Chemical Vapor Deposition Growth of AlAsSb
and InAsSb/InAs Using Novel Source Materials for Infrared
Emitters ",Journal of Electronic Materials, Vol. 26, No. 8,1997.
[26].Y. H. Zhang, A. Lew, E. Yu and Y. Chen, " Microstructural
properties of InAs/InAsSb superlattices and InAsSb ordered
alloys grown by modulated molecular beam epitaxy", Journal
of Crystal Growth 175/176 (1992) 833-837.
[27].H. Khald, H. Mani and A. Joullie , "Shollow diffusion of zinc
into InAs and InAsSb " , Jourmal of Applied Physics 64 (9), 1
November 1988.
[28].R. J. Egan, V. W.,L.Chin, and T. L.Tansley , "Dislocation
scattering effects on electron mobility in InAsSb" , Jourmal of
Applied Physics 75 (5), 1 March 1994.
[29]. A. G. Milnes and D. L. Feucht , "Heterojunctions and
Metal-Semiconductor Junctions " , New York , 1976 .
[30].B.Gretens, S.Nemeth, C.Van Hoof and P. Van. Daele ,
"Growth and characterisation of mid-IR InAs0.9b0.1/InAs
strained multiple quantum well light emitting diodes grown on
InAs substrates ",IEE proc. Optoelectron, Vol. 144, No. 5,
October 1997.
[31].S. R. Kurz, R. M .Biefeld, L. R. Dawson, I. J. Fritz and T. E.
Zipperian, "High photoconductive gain in lateral InAsSb
strained layer superlattice infrared detectors ",Appl. Phys.
Lett.53 (20) 14 November 1988.
[32].R.M.Biefeld, S.R.Kurtz and S.A. Casalnuovo "Reproducible
growth of InAsSb/InSb strained-layer superlattice
photodiodes by low pressure MOCVD", Journal of Crystal
Growth 124 (1992)401-408 North-Holland .
[33].S.R.Kurtz, G.C. Osbourn, R.M.Biefeld and S.R.Lee,
"Photoluminescence and the band structure of InAsSb strained
layer superlattices" Appl.Phys. Lett.53 (3) 18 July 1988.
[34].Lifeng Liu, G. S. Lee and A. H. Marshak , "Band structure of
InAsSb strained-layer superlattices " , Jourmal of Applied
Physics 71 (4), 15 February 1992.
[35].S. R. Kurtz, L. R. Dawson and R. M. Biefeld , "Long-
Wavelength InAsSb strained Layer Superlattice Photovoltatic
Infrared Detectors" , IEEE E. D. Letters.Vol. 10 No. 4. April
1989.
[36]. Pallab Bhattacharya , " Semiconductor Optoelectronic
Devices " , Prentice Hall , p105 .
[37]. T. P. Sun , Ph.D. Thesis , " Preparation and Characterist-
ics of InSb Metal-Oxide-Semiconductor Capacitors and
p+-n junctions " , p60 , 1990 .
[38]. C. L. Jan , Ms. Thesis , " The study and Fabrication on
InAs Detectors and Light Emitting Diodes " , p45 , 1995 .
[39]. Haruhiro Oigawa , Jia-Fa Fan , Yasuo Nannichi , Hirohiko
Sugahara and Masaharu Oshima , " Universal passivation
effect of (NH4)2SX treatment on the surface of III-V comp-
ound semiconductors " , Jap. J. Appl. Phys. , 30, 3A ,
pL322 , 1991 .
[40]. D. A. Baglee , D. K. Ferry , C. W. Wilmsen and H. H.
Wieder , " Inversion layer transport and properties of
oxides on InAs " , J. Vac. Sci. Technol. , 17 , 5 , p1032 ,
1980 .
[41]. U. Kunze , " Coherent Zener tunneling in InAs electron
inversion layers " , Appl. Phys. Lett. , 54 , 22 , p2213 ,
1989 .
[42]. John David Vincent , " Fundamental of Infrared Detectors
Operation and Testing " , New York , 1990 .

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top