(3.237.234.213) 您好!臺灣時間:2021/03/09 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃德興
研究生(外文):Dring Shing Huang
論文名稱:電磁感應反斥式磁浮矽晶圓搬運系統之設計與製作
論文名稱(外文):Design and Implementation of a Magnetically Levitated Silicon Wafer Carrier System
指導教授:孫育義孫育義引用關係李祖聖
指導教授(外文):York-Yih SunTzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:130
中文關鍵詞:感應反斥式磁浮系統激磁電源線性感應馬達變頻器浮揚電磁鐵陣列移行電磁鐵陣列
外文關鍵詞:Magnetic levitationLevitation using induced eddy currentseddy currentspropelling forcea wafer carrierease in controlsemiconductorno contact friction
相關次數:
  • 被引用被引用:6
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討運用感應反斥式的概念去實現磁浮盤浮揚與移行方面的問題上。整個系統中,將使用到激磁電源、變頻器與線性感應馬達。激磁電源的設計是本篇論文的重點所在,其應用了先進的電力電子技術,目的是使磁浮盤浮揚。變頻器與線性感應馬達是使磁浮盤移行,其中線性感應馬達包括移行電磁鐵陣列與鋁盤。在實驗中,變頻器加入三相220V交流電源,以產生三相交變移動磁場使磁浮盤移行。整篇論文首先將依章節一步一步地闡述各個階段的設計製作方法,包括激磁電源各單元的設計與組成、浮揚電磁鐵陣列與移行電磁鐵陣列的製作等。接著以電腦模擬磁力線分佈與磁通密度分佈並說明浮揚力的原理與現象。最後以實作來展現所設計製作系統之效果及可行性,同時探討在不同重量與不同激磁電流下磁浮盤承載特性的量測與研究。
Magnetic levitation (Maglev) Systems have the advantages of no contact friction, low vibration, low noise, no lubrication questions, and ease in maintenance. They can be used in special environments such as vacuum, dustless room, vapor and special gases. Therefore, the topic on magnetically levitated carrying technique becomes a world wide research subject in recent years. In semiconductor and biochemical industries, material should be processed in clean-rooms of very high grade. Human operators, being the source of dust, are not allowed to enter the clean-room. Therefore, a dustless automatic carrying system is required to transport material between various engineering units. Such a carrying system should meet the following requirements: no contamination, low operation cost, space saving and high reliability. For the time being, the only solution to this problem is the magnetically levitated carrier system.
Principly, magnetic levitation or suspension methods can be classified into three categories:
(1) Suspension using controlled DC electromagnets.
(2) Levitation using superconductors.
(3) Levitation using induced eddy currents.
Method (1) makes use of the attractive force between electromagnets and ferromagnetic materials. It is a subject of world-wide investigation for advanced ground transportation schemes. The disadvantages of this method are high cost and requiring complicated control systems.
Method (2) makes use of the Meissner effect (rejection of magnetic flux in the superconducting body) to produce repulsion force between a superconducting body and a permanent magnet. This method also has the disadvantage of high cost because we have to cool a metal to a temperature near the absolute temperature (-273℃).
Method (3) makes use of the force of repulsion generated between a coil carrying alternating current and an electrically conducting surface (copper or aluminum plate) so that the magnetic field of the coil induces eddy currents in the conductor. This method has the advantages of low cost, simplicity and ease in control, and is therefore most suitable for magnetically levitated carrier systems.
In this thesis, the method of levitation using induced eddy currents is used to design and implement a magnetically levitated carrier system. This system is designed to transport a single wafer between clean rooms. It consists of a wafer carrier, two levitation tracks and a carrier propulsion system. Each levitation tracks includes 12 electromagnet coils. The carrier is an aluminum plate with special shape. An electromagnet propulsion system is designed to accelerate the carrier. The propelling force is obtained by sending 3-phase currents to the propulsion coils. The carrier is stabilized by a PI controller.
The entire system is successfully demonstrated for a transport length of 150 cm. The maximum carrier velocity is 50 cm/sec.
目 錄
中文摘要I
英文摘要II
誌謝IV
目錄V
圖目錄VII
表目錄XI
第一章 緒論1
1-1 前言1
1-2 文獻回顧2
1-3 研究動機與摘要3
第二章 感應反斥式磁浮系統的基礎理論4
2-1 電磁感應的法拉第定律4
2-2 在時變磁場中的靜止電路4
2-3 渦流6
2-4 磁通的浸透深度10
2-5 十字常導體的浮揚原理11
2-6 激磁電源、浮揚電磁鐵陣列與浮揚鋁盤間的浮揚原理14
2-7 線性感應馬達的理論分析17
2-8 線性感應馬達、變頻器、推進電磁鐵與鋁盤間的推進原理27
2-9 電磁鐵與磁路分析31
2-10 浮揚高度回授控制36
2-11 載盤偏移與旋轉之研究54
第三章 感應反斥式磁浮系統的構成56
3-1 系統架構56
3-2 浮揚系統60
3-2-1激磁電源60
3-2-2浮揚電磁鐵陣列62
3-2-3浮揚鋁盤64
3-3浮揚系統控制電路64
3-3-1 電路架構64
3-3-2 控制電路65
3-4推進系統66
3-4-1線性感應馬達66
3-4-2 RM5變頻器(AC MOTOR CONTROLLER)67
3-4-3推進電磁鐵陣列69
3-4-4浮揚鋁盤70
第四章 激磁電源的設計與原理73
4-1 穩壓回授控制及波寬調變電路73
4-2 功率因素調整器87
4-3 正弦波產生器87
4-4 橋式變流器90
4-5 過負載保護電路92
第五章 磁力線模擬與晶圓磁浮系統結果95
5-1磁場的數值計算和計算機輔助設計95
5-2磁力線模擬結果101
5-3晶圓磁浮系統實驗結果108
第六章 結論與展望126
6-1結論126
6-2未來之展望127
參考文獻128
圖目錄
第二章圖例
2-1 在導體圓盤上由均勻且為常數之 所感應出的渦流7
2-2 在導體圓盤截面積abcd上的總渦流7
2-3 渦流的發生9
2-4 金屬板中之電流密度圖10
2-5 渦流電流密J之衰減10
2-6(a) 浮揚電磁鐵陣列與鋁盤尺寸圖12
2-6(b) 浮揚電磁鐵陣列13
2-6(c) 浮揚電磁鐵陣列13
2-7 電磁鐵與浮揚鋁盤間的浮揚原理14
2-8 浮揚電磁鐵陣列線圈之接法15
2-9 陰影為渦流作用區16
2-10 浮揚電磁鐵陣列上方之電磁反斥力17
2-11 單側式短二次型線性感應電動機之構造以及行進磁場分佈與
渦流分佈之關係18
2-12 線性感應電動機之動作原理20
2-13 平板狀單側式短一次型LIM21
2-14 平板狀兩側式短二次型LIM21
2-15 負載時間率(DF)之決定法24
2-16 端效應感應渦流之形狀25
2-17 終端效應引起空隙中之磁通密度分佈26
2-18 邊緣效應引起空隙中之磁通密度分佈26
2-19 迴轉型線性感應馬達之展開28
2-20 線性感應馬達29
2-21 變頻器(AC MOTOR CONTROLLER)30
2-22 電磁鐵與鋁盤之示意圖31
2-23 磁化曲線34
2-24 磁路分析35
2-25 固定電流時電磁力與距離之關係37
2-26 固定浮揚距離時電磁力與電流之關係38
2-27 比例控制之系統根軌跡41
2-28 整個磁浮系統之方塊圖42
2-29 浮揚系統的開迴路方塊圖46
2-30 閉迴路控制系統47
2-31 線性化後使用比例控制器系統之根軌跡圖48
2-32 線性化後使用比例控制器系統之波德圖48
2-33 相位領先控制器49
2-34 使用相位領先控制器系統之根軌跡圖51
2-35 使用相位領先控制器系統之波德圖52
2-36 設計完成之系統方塊圖52
2-37 考慮鋁盤二次側電氣效應時的根軌跡圖53
2-38 十字載台之偏移與旋轉55
第三章圖例
3-1 整個磁浮搬運系統的構成圖57
3-2 磁浮搬運系統之構成概念圖58
3-3 利用感應反斥原理的浮揚搬送系統概念圖59
3-4 磁浮搬運系統方塊圖60
3-5 激磁電源61
3-6 鐵蕊尺寸63
3-7 浮揚系統電路架構65
3-8 浮揚系統等效電路65
3-9 變流器控制電路架構66
3-10 電磁鐵陣列線圈之接線法69
3-11 磁浮系統實體照片70
3-12 激磁電源之五組單元照片71
3-13 整個磁浮晶圓搬運系統完成照片72
第四章圖例 激磁電源的設計與原理
4-1 穩壓回授與波寬調變器電路圖74
4-2 穩壓回授控制系統方塊圖(I)73
4-3 穩壓回授電路中PI控制器的電路圖75
4-4(a) PI控制器的簡化電路圖(I)75
4-4(b) PI控制器的簡化電路圖(II)77
4-4(c) PI控制器的簡化電路圖(III)77
4-5 穩壓回授控制電路圖79
4-6 穩壓回授控制系統方塊圖(II)80
4-7 穩壓回授控制系統方塊圖(III)80
4-8 激磁負載等效電路81
4-9 I2的相量(phasor)圖81
4-10 系統之簡化方塊圖82
4-11 回授系統波德圖83
4-12 回授系統步階響應圖83
4-13 回授系統步階響應圖84
4-14 PWM Modulator85
4-15 波寬調變電路的方塊圖84
4-16 三角波電路86
4-17 波寬調變器之四個比較器87
4-18 PWM波形88
4-19 PFC電路圖89
4-20 正弦波產生器90
4-21 橋式Inverter電路圖91
4-22 過載保護電路93
4-23 VA的波形94
第五章圖例
5-1 電磁鐵磁極面的磁通密度分佈95
5-2 磁力線圖上之二維平面磁束密度98
5-3 磁力線圖之平面99
5-4 浮揚電磁鐵陣列之實際尺寸圖101
5-5 浮揚電磁鐵陣列之磁通密度分佈102
5-6 浮揚電磁鐵陣列之磁力線分佈103
5-7 感應反斥型磁浮系統109
5-8 行進中的磁浮盤(I)109
5-9 行進中的磁浮盤(II)110
5-10 磁浮盤的負荷特性113
5-11 浮揚體之負荷特性114
5-12 利用感應反斥的浮揚特性116
5-13 555 Timer第3腳之示波器量測波形117
5-14 555 Timer第3腳之示波器量測頻譜117
5-15 4013 IC第1腳之示波器量測波形118
5-16 4013 IC第1腳之示波器量測頻譜118
5-17 TL084第7腳之示波器量測波形119
5-18 TL084第7腳之示波器量測頻譜119
5-19 TL084第8腳之示波器量測波形120
5-20 TL084第8腳之示波器量測頻譜120
5-21 TL084第14腳之示波器量測波形121
5-22 TL084第14腳之示波器量測頻譜121
5-23 TL084第14腳之示波器量測波形[第一組電源]122
5-24 TL084第14腳之示波器量測頻譜[第一組電源]122
5-25 橋式INVERTER上由示波器量測之PWM波形123
5-26 橋式INVERTER上由示波器量測之PWM頻譜123
5-27 激磁電源之輸出電壓示波器量測波形(使用差動Probe)124
5-28 激磁電源之輸出電壓示波器量測頻譜124
表目錄
5-1 磁浮盤負荷實驗結果112
5-2 利用感應反斥的浮揚特性115
參考文獻
[1] I. A. Wang, A Magnetic Levitation Silicon Wafer Transport System, PH.D. Dissertation, The University of Texas at Austin, 1993.
[2] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Inc, New York, 1986.
[3] 大川光吉, 永久磁石磁氣回路之設計、特性計算法, 綜合電子出版, 昭和60年11月。
[4] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, Second Edition, Wiley, 1995.
[5] A. Nabase, S. Ogasawara, and H. Akagi, “A Novel Control Scheme for Current-Controlled PWM Inverters, “IEEE Trans. On Industrial Application,” vol. IA-22, pp. 697-701, July/August 1986.
[6] S. Nagai, H. Nagura, and M. Nakaoka, “High-Frequency Inverter with Phase-Shifted PWM and Load-Adaptive PFM Control Strategy for Industrial Induction-Heating,” IEEE IAS, Oct. 1993.
[7] T. G. Barnes FOUNDATIONS of ELECTRICITY & MAGNETISM, Addison-Wesley Inc, 1984.
[8] 磁氣調查專門委員會編, Linear Motors and Their Applications, 電氣學會, Japan。
[9] 黃忠良, 磁懸浮與磁力軸承, 復漢出版社印行, 1994。
[10] M. Morishita, T. Azukizawa, S. Kanda, N. Tamura and T. Yokoyama, “A New Maglev System for Magnetically Levitated Carrier System,” IEEE Transactions On Vehicular Technology, Vol. 38, No. 4, pp. 230-236, November 1989.
[11] 朱慶隆, 孫育義, 陳建富, 謝聰烈, “磁浮空中感應加熱系統,” 中華民國第十六屆電力工程研討會論文集, p393~396, Nov 24/25 1995。
[12] 林義讓, 林清樺 編譯, 線性搬運技術與應用, 全華科技圖書股份有限公司印行, 1995。
[13] 許中平, 黃煌嘉 編譯, 無刷伺服電動機的基礎與應用, 全華科技圖書股份有限公司印行, 1993。
[14] 許溢适 編譯, 線型電動機應用手冊, 文笙書局, 1987。
[15] 曹世昌 編著, 電磁場的數值計算和微波的計算機輔助設計, 電子工業出版社, 1989。
[16] 許溢适 編譯, 磁浮鐵路的技術, 文笙書局, 1992。
[17] 許溢适 編譯, 線型驅動技術及其應用, 文笙書局, 1996。
[18] 魏炯權 編著, 電工材料, 全華科技圖書股份有限公司印行, 1994。
[19] 許慶芳, IBM PC電腦入門與BASIC, 第十三版, 松崗出版社。
[20] S. A. Boctor, Electric Circuit Analysis, Second Edition, 1991.
[21] G. F. Franklin, J. D. Powell and A. Emami-Nasini, Feedback Control of Dynamics System, 2nd. Ed., Addition-Wesley, Reading MA, 1991.
[22] C. T. Chen, Linear System Theory and Design, CBS College Publishing, 1984.
[23] C. E. Lin and H. L. Jou, “Force Model Identification for Magnetic Suspension System via Magnetic Field Measurement,” IEEE Trans. On Instrument and Measurement, Vol. 42, pp. 767-771, 1993.
[24] B. V. Jayawant, and D. P. Rea, “New Electromagnetic Suspension and Its Stabilization,” Proc. IEE, Vol. 115, No. 4, pp. 549-554, April 1968.
[25] C.-F. Lin, Advanced Control System Design, Prentice Hall, Inc., 1994.
[26] C. E. Lin and L. A. Lee, “Dynamic Control of Magnetic Suspension System,” IEEE Advance Motion Control Conference, Kieo University, Tokyo, Japan, March 30, pp.103-108, 1990.
[27] P. Horowitz, and W. Hill, “The Art of Electronics,” New York: Cambridge, Second Edition, 1989.
[28] J. J. D’azzo, and C. H. Houpis, “Linear Control System Analysis and Design, Conventional and Modern,” New York: McGraw-Hill, 1975.
[29] G. Schweitzer, “Mechatronics-a concept with Examples in Active Magnetic Bearings,” Mechatronics, Vol. 4, No. 2, pp. 65-74, 1994.
[30] M. Fujita, K. Hatake and F. Matsumura, “Loop Shaping Based Robust Control of a Magnetic Bearing,” IEEE Control System Magazine, Vol. 13, pp. 57-65, 1993.
[31] J.-H. Li and T.-H. S. Li, “Multiloop Control of Thyristor-driven Magnetic Levitation System,” Mechatronics, Vol. 5, No. 5, pp. 469-481, 1995.
[32] M. J. Goodyer, M. J., R. I. Henderson and M. Judd, “The Measurement of Magnus Force and Moment Using A Magnetically Suspended Wind Tunnel Model,” IEEE Transactions on Magnetics, Vol. Mag-11, No. 5, pp. 1514-1516, September 1975.
[33] K. R. Sivier, “A One-Component, Magnetic Support-and-Balance System,” Journal of Aircraft, Vol. 6, No. 5, pp. 398-404, 1969.
[34] M. Vidyasagar, Nonlinear systems analysis, Prenctice-Hall, 1978.
[35] S. Franco, Design with Operational and Analog Integrated Circuits, McGraw-Hill Book Co., New York, 1988.
[36] T. H. Wong, “Design of a Magnetic Levitation Control System-an Undergrate Project,” IEEE Trans. On Education, Vol. 29, pp. 196-200, 1986.
[37] T. C. Wang, and Y. K. Tzeng, “A New Electromagnetic Levitation System for Rapid Transit and High Speed Transportation,” IEEE Transactions On Magnetics, Vol. 30, No. 6, pp. 4734-4736, Nov. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔