跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳弼先
研究生(外文):Bi-Sheng Chen
論文名稱:無線透膚電能傳輸系統之研究
論文名稱(外文):Analysis and Design of Wireless Tramscutaneous Energy Transmission System
指導教授:蔡智明蔡智明引用關係
指導教授(外文):Chih-Ming Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:91
中文關鍵詞:全人工心臟交換式電源轉換電路電磁耦合
外文關鍵詞:total artificial heartsswitching power supplyelectromagnetic coupling
相關次數:
  • 被引用被引用:5
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電動液壓式人工心臟的能量來源是電能,由於理想人工心臟將完全裝置於人體內,與外界沒有直接的接觸,因此如何將體外電能穩定地內傳,而又對人體不造成傷害,將是研究發展此系統的一大挑戰,這也就是本論文的研究重點。為了避免對皮膚造成刺激及感染,採用無線非接觸式的電磁耦合來傳輸電能,是一種較為理想的方式。
本論文研究發展的無線透膚電能傳輸系統架構,可分為直流至直流轉換、直流至高頻轉換、高頻耦合、高頻至直流轉換等四個部分,主要是利用交換式電源供應器的技術來完成電路設計。其中直流至直流轉換為一個升壓型轉換器,主要目的是將電壓提升後,作為下一級的輸入電壓,使下一級電路能有較小的電流,如此可提高電路的安全性。此電路目前在輸入電壓為12~30伏特,輸出為40伏特時,效率為85 %且電壓變動率在2 %以下;下一級電路則為半橋串聯共振式轉換電路,其中包含了直流至高頻轉換、高頻耦合、高頻至直流轉換等三部分,在輸出功率為36W時有最佳的轉換效率80 %。由於線圈的耦合量可能會因為呼吸或是一般性的運動而改變,造成輸出電壓變動,而且本系統是屬於無線能量傳輸,無法藉由有線的方式由體內迴授出輸出電壓訊號,因此為了補償變動量,本論文利用控制體外一次側電路中共振槽輸入阻抗的相位來完成回授控制,以穩定能量的傳輸,在耦合線圈距離為6~18 mm變動時,輸出電壓變動可以維持在 伏特以內。
另外,本論文探討如何克服耦合線圈的能量損耗以及體內元件功率散逸的問題,這些損耗掉的能量會以熱的方式釋放出來,造成體內局部溫度升高,而引起危險。由於本系統操作在高頻,導體會有集膚效應出現,為了克服導體的集膚效應,因此必須用里茲線來取代一般單心銅線來繞製線圈,如此線圈導體損失才可有大幅的改善。此外由於耦合線圈的好壞主要取決於耦合係數,因此本論文利用一套量測耦合係數的方法來量測耦合係數,並且發現當兩個耦合線圈有相同內徑大小時,會有較佳的耦合效果。
本論文證實了此種無線電能傳輸架構有相當高的可行性,目前已經歸納出一些系統設計的技巧及重點,未來將可提供給電動液壓式人工心臟一個安全、穩定、高效率的能源。
The energy source of electrohydraulic pumping system for total artificial hearts (TAH) is electricity. Since TAH is totally enclosed in a body without any direct connection to the outside world, transmission of power through the closed chest wall becomes a major challenge to develop the TAH system. The goal of this research is to design a wireless transcutaneous energy transfer system with minimum risk of infection and irritation to the skin.
There are four parts in this proposed system: DC to DC converter, DC to high frequency transfer circuit, coil coupling structure, and high frequency to dc rectify circuit. We use the switching power supply technique to complete the design of the circuits. Among them, DC to DC converter is a voltage booster. After the voltage is risen, the input voltage of the next stage has a smaller current, so the safety of the system is improved. Currently, the booster output voltage is always kept at 40 volts even when the input voltage of the booster varing from 12 to 30 volts. The efficiency is about 85 % and the voltage variation is under 2 %. The rest of the system is a half-bridge series resonant converter, and the optimized conversion efficiency is about 80 % when the output power equals 36 watts. The instability of the electromagnetic coupling between coils may occur when one is breathing or moving. In order to compensate this variation, we complete the feedback by controlling the phase of the input impedance of the tank circuit. When the variation of the coil spacing is between 6 and 18 mm, the output voltage variation can be kept within ±0.4 volts. Since the coupling of the coils is determined by the coupling coefficient, we used a method to measure it and find that a better performance can be achieved by increasing the number of the wire in the coil.
From the experiment results of the prototype we find the proposed energy transfer system is very promising. Indeed we have concluded several design tricks and pinpointed a few problems. The direction of this research is now clear and focused. Therefore, the completed energy transfer system will be a safe, stable and efficient energy source for totally artificial hearts.
第一章 緒論
1-1 研究動機與目的 1
1-2 人工心臟目前研究情形 2
1-3 無線透膚電能傳輸系統簡介 6
1-4 論文大綱 10
第二章 直流至直流轉換電路架構與分析
2-1 前言 12
2-2 升壓型直流至直流轉換電路基本操作原理 12
2-3 升壓型直流至直流轉換電路規格設定與元件選擇 14
2-4 升壓型轉換電路之數學模式與補償電路設計 18
2-5 柔性起動電路 23
2-6 升壓型直流至直流轉換電路測試結果 25
2-7 結論 26
第三章 半橋串聯共振式轉換電路架構與分析
3-1 前言 27
3-2 半橋串聯共振式轉換電路基本架構與操作原理 28
3-2-1 半橋串聯共振式換流器 30
3-2-2 半橋串聯共振式換流器之切換模式 33
3-3 整流電路設計 38
3-3-1 整流電路元件的選擇 39
3-3-2 整流電路的設計考量 40
3-4 系統規格設定與元件選擇 42
3-5 橋串聯共振式轉換電路之數學模式 44
3-6 迴授控制電路設計 51
3-6-1 模擬結果與補償電路設計 52
3-7 驅動電路設計 54
3-8 過電流保護電路設計 56
 3-9 截止緩衝電路設計 56
3-10 比流器的設計 58
3-11 電路特性量測 59
3-12 結論 64
第四章 高頻至高頻轉換
4-1 前言 66
4-2 合線圈設計考量 66
4-3 合線圈參數量測 68
4-4 實驗結果 71
4-5 結論 76
第五章 完整系統的實驗結果與效能評估
5-1 前言 77
5-2 實驗結果 77
5-3 系統效能評估 79
5-4 結論 81
第六章 結論與未來研究方向
6-1 結論 82
6-2 未來研究方向 84
附錄 86
參考文獻 87
作者簡介 90
著作權聲明 91
[1] 鄭國財,台南市立醫院-台灣人工心臟研究中心, "電動液壓鳳凰七號全人工心臟初步結合研究," NSC 86-2314-B-217-001-M08, 86年10月.
[2] Akutsu T. and Kolff W. J.,"Permanent substitutes for valve and heart,"
Trans. Am. Soc. Artificial Intern Organs 1958, 37:171-180.
[3] Cooley, Denton A., Frazier, and O. Howard,"The total artificial heart as a bridging device to cardiac transplantation/a production of the Bio-Communications Laboratory,"Texas Heart Institute WG 169.5 VC No.2
1986.
[4] Cecil C. Vaughn, Jack G. Copeland, Kevin Cheng, Jon Austin, Mark Levinson, and Robert W. Emery,"Interim Cardiac Replacement with a Mechanical Heart: Staged Cardiac Transplantation,"Texas Heart
Institute Journal, Vol.13, No.1, March 1986.
[5] D. L. Young, S. H. Hsieh, J. Y. Lin, C. H. Hsu, K. T. Cheng, and C. S. Tung,"Modeling and Analysis for the Electro-Hydraulic Pump of Pheonix-7 Total Artificial Heart,"the tenth proceeding of International Conference on Mechanics in Medicine and Biology, Honolulu Hawaii USA, pp.57-60, 1997
[6] Carl F. Andren, M. A. Fadali, Vincent L. Gott, and Stephen R. Topaz, "The Skin Tunnel Transformer: A new system that permits both high efficiency transfer of power and telemetry of data through the intact skin," IEEE Trans. Biomed. Eng., Vol.15, No.4, pp.278~280, October 1968.
[7] Jack W. Fuller, "Apparatus for efficient power transfer through a tissue barrier," IEEE Trans. Biomed. Eng., pp.63-65, January 1968.
[8] John C. Schuder, Jerry H. Gold, and Hugh E. Stephenson, "An inductively
coupled RF system for the transmission of 1 kW of power through the
skin," IEEE Trans. Biomed. Eng., Vol.18, No.4, pp.265-272, July 1971.
[ 9 ] 梁適安, "交換式電源供應器之理論與實務設計," 全華, pp.43-72、
pp.227-292, 84年8月.
[10] J. Xu, "An analytical technique for analysis switching DC to DC
converter," IEEE International Symposium On Circuits and Systems,
Vol.2, pp.1212-1215, 1991.
[11] P. R. K. Chetty, "Modeling and design of switching regulators,"
IEEE Trans. On Aerospace and Electric Systems, Vol.18, No.3,
May 1982.
[12] 梁適安譯,"高頻交換式電源供應器,"全華, 第二版, pp.171-188、
277-280, 87年3月.
[13] M. K. Kazimierczuk, and D. Czarkowski, "Resonant power converter,"
John Wiley & Sons, Inc, pp.149-200, 1995.
[14] Robert L. Steigerwald, "A comparison of half-bridge resonant converter topologies," IEEE Trans. On Power Electronic, Vol.3, No.2, pp.174-182, April 1988.
[15] N. Mohan, T. M. Undeland, and W. P. Robbins, "Power electronics, applications and design," John Wiley & Sons, Inc, 2nd Edition, 1995.
[16] 莊英俊, "高功因螢光燈電子安定器之研製," 國立中山大學電機工
程研究所博士論文, pp.77-87, 86年.
[17] M. K. Kazimierczuk and W. Szaraniec, "Class D zero-voltage-switching inverter with only one shunt capacitor," IEE Proc. B, Power Electron Appl., Vol.139, No.5, pp.449-456, September 1992.
[18] M. K. Kazimierczuk, "Class D voltage switching MOSFET power amplifier," IEE Proc. B, Power Electronic Appl., Vol.138, No.6, pp.285-296, November 1991.
[19] Richard P. Phillips, "A high capacity transcutaneous energy transmission system," ASAIO Journal 1995, 41:M259-M262.
[20] E. X. Yang, F. C. Lee, and M. M. Jovanovic, "Small-signal modeling of power electric circuits using extended describing function technique," VPEC PES Proceeding, pp.167-178, 1991.
[21] E. X. Yang, F. C. Lee, and M. M. Jovanovic, "Extended describing function technique applied to the modeling of resonant converters," VPEC PES Proceeding, pp.179-191, 1991.
[22] Ali. Ghahary and Bo H. Cho, "Design of a transcutaneous energy transmission system using a series resonant converter," IEEE Trans. On Power Electronic, Vol.7, No.2, pp.261-268, April 1992.
[23] John A. Miller, Gaetan Belanger, and Tofy Mussivand, "Development of an autotuned transcutaneous energy transfer system," ASAIO Journal 1993, 39:M706-M710.
[24] J. S. Brugler, D. H. LaForge, J. Lee, F. K. Beering, J. S. Jassawalla, and P. M. Portner, "Transcutaneous power transmission and electronic control of a ventricular assist system," Proceedings of the IEEE Eighth Annual Conference of the Engineering in Medicine and Biology Society, pp.73-76, 1986.
[25] M. C. Cosby, Jr. and R. M. Nelms, "A resonant Inverter for electronic ballast application," IEEE Trans. On Industrial Electronic, Vol.41, No.4, pp.418-425, August 1994.
[26] 謝沐田, "高低頻變壓器設計," 全華, pp.42-46、pp99-100, 84年7月.
[27] G. B. Joung and B. H. Cho, "An energy transmission system for artificial heart using leakage inductance compensation of transcutaneous transformer," Power Electronics Specialists Conference, PESC ''96 Record, 27th Annual IEEE, pp.898-904, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top