(3.239.33.139) 您好!臺灣時間:2021/03/07 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡東展
研究生(外文):Don-Jan Tsay
論文名稱:以液相沈積法沈積摻質二氧化矽之膜的品質研究
論文名稱(外文):The Study of Doped Silicon Dioxide Deposited by Liquid-Phase Deposition Method
指導教授:洪茂峰洪茂峰引用關係王永和王永和引用關係
指導教授(外文):Mau-Phon HoungYeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:59
中文關鍵詞:液相沈積摻質二氧化矽崩潰電壓
外文關鍵詞:Liquid-Phase DepositionDoped Silicon DioxideBreakdown Voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用一室溫成長之系統來成長(LPD)二氧化矽膜,繃並以此為基礎嘗試發展摻氮磷之二氧化矽膜;在探討其性質上,我們做了不同物性及化性的測試,包括AES,TEM,FTIR,XPS等,在電性方面用高頻電容-電壓曲線來分析介面之品質,藉由漏電流及崩潰電壓來判斷氧化層之品質。
在LPD含氟二氧化矽的實驗中,調變六氟矽酸的濃度將可以得到不同含氟量的二氧化矽膜,藉由FTIR的頻譜可知,1.5M的濃度可得到最高之含氟量。在以氨水為氮離子摻質來源的實驗中,未經高溫熱處理的LPD-SiON中的氮離子因尚未活化之故,漏電流將隨氨水濃度增加,經900℃高溫熱處理30分的氧化膜將顯現較高的崩潰電壓的特性,可由原先未摻雜之8MV/cm提升至13.5MV/cm;在加入磷酸之後,沈積率與折射率都將有所增加,藉由調變溶液中的PH值將可使平帶電壓由-6.2V往較低的-2V方向移動。

In this paper, we use a room temperature processing system, Liquid Phase Deposition (LPD) method, as theoretic background to study the doping (N, P) silicon oxide;To investigate the the properties of silicon dioxide , we have done different physical and chemical tests, including AES, TEM, FTIR, XPS,. We use the high frequency C-V curve to study the interface properties. The leakage current and breakdown voltage help to clarify the film quality.
The concentration of fluorine in the LPD-SiO2 change with the concentration of hydro-fluorosilicic, and by the FTIR spectroscopy we find the concentration of about 1.5M will get the maximum concentration of fluoric incorporation. With the addition of Ammonia as a nitride-doped source, we can find the higher leakage current of as-deposited silicon dioxide due to the higher inactive impurity ions in it. After the Rapid Thermal Annealing at 900℃ for 30 minutes, it will perform better quality in the breakdown voltage. With the incorporation of H3PO4, the deposition rate and refractive index of LPD-SiO2 is increased and the flat-band voltage will be decreased .

第一章 簡介
1-1 發展背景
1-2 論文架構
第二章 實驗與特性量測
2-0 簡介
2-1 基本沈積機制
2-2 LPD的優點
2-3 沈積系統
2-4 晶圓潔淨步驟
2-5 液相沈積溶液的備置
2-5-1 飽和六氟矽酸的備置
2-5-2 硼酸備置
2-5-3 摻質溶液備置
2-6 液相沈積流程
2-7 MOS電容之製作
2-8 量測方法
2-8-1 物理性質與化學性質量測
2-8-2 電性量測
第三章 摻質(F,N,P)氧化層之特性
3-1 LPD-SiO2摻氟的影響
3-1-1 實驗流程
3-1-2 AES縱深分佈
3-1-3 XPS頻譜分析
3-1-4 SEM、TEM及EDS元素分析
3-1-5 基本延遲成長曲線
3-1-6 硼酸對漏電流特性之影響
3-1-7 快速熱退火對膜特性之影響
3-2 LPD-SiO2摻氮的影響
3-2-1 實驗流程
3-2-2 SIMS分佈
3-2-3 NH4OH量對沈積速率之影響
3-2-4 NH4OH量對折射率之影響
3-2-5 XPS峰值變化
3-2-6 NH4OH量對C-V特性變化
3-2-7 NH4OH量對I-V特性變化
3-2-8 快速熱退火對折射率的影響
3-3 LPD-SiO2摻磷的影響
3-3-1 實驗流程
3-3-2 SIMS分佈
3-3-3 FTIR頻譜之峰值變化
3-3-4 用快速熱退火形成P-O鍵結
3-3-5 H3PO4量對成長速率之影響
3-3-6 H3PO4量對折射率之影響
3-3-7 C-V特性探討
3-3-8 I-V特性探討
第四章 結論
4-1 結果與討論
4-2 未來工作
參考文獻
圖表目錄
圖1-1 基本架構圖。
圖2-1 液相沈積系統之設備圖
圖3-1 液相沈積實驗流程
圖3-2 LPD摻氟二氧化矽膜之歐傑縱深分析。
圖3-3 LPD摻氟二氧化矽膜之XPS頻譜分析
圖3-4 LPD摻氟二氧化矽膜SEM及TEM
元素分析
圖3-5 LPD-SiOF之EDS分析圖
圖3-6 顯示不同濃度之六氟矽酸成長之SiOF
的FTIR頻譜圖
圖3-7 六氟矽酸濃度對應於FTIR峰值之變化
圖3-8 為FTIR圖中Si-F峰值強度相對於Si-O峰值
強度之比值(%)
圖3-9 快速熱退火(900℃, 180秒) 對LPD-SiOF
中F離子之影響
圖3-10 LPD-SiOF延遲成長曲線
圖3-11 比較硼酸對於LPD氧化層漏電流之影響
圖3-12 研究不同的六氟矽酸濃度對於漏電流的
影響
圖3-13 針對不同的溫度進行退火觀察氧化層
厚度與折射率的變化。
圖3-14 顯示在高溫之下不同熱處理時間對折
射率的影響。
圖3-15 LPD摻氮實驗流程
圖3-16 LPD-SiON之SIMS的縱深分析圖
圖3-17 氨水濃度對於沈積速率的影響
圖3-18 氨水濃度對於折射率的影響
圖3-19 不同氨水濃度對Si、F、N的XPS峰值
變化情形
圖3-20 氨水濃度對於氧化層有效電荷數(Qeff)
與平帶電壓(Vfb)的影響
圖3-21 不同氨水濃度對漏電流特性及崩潰
電場的影響
圖3-22 LPD-SiON經過快速熱處理過後之厚度
與折射率的變化
圖3-23 摻磷實驗流程
圖3-24 LPD-SiOP的SIMS縱深分析圖
圖3-25 顯示LPD-SiOP不同濃度退火前後Si-O
峰值位置的變化情形
圖3-26顯示退火前後LPD-SiOP的FTIR頻譜圖
圖3-27 不同的六氟矽酸濃度對應於不同磷酸量
其成長速率的關係(a)不加硼酸;(b)加硼酸
圖3-28折射率隨六氟矽酸濃度及不同磷酸量
的變化情形。
圖3-29磷酸量對折射率與成長速率的影響。
圖3-30加入不同量的磷酸對於其氧化層中的有效電
荷密度Qeff與Vfb的關係
圖3-31加磷酸六氟矽酸濃度來成長LPD-SiOP
膜加以分析其漏電流

[1] H.Nagayama, H.Honda, H.Kawahara, “A New Process for Silica Coating”, J. Electrochem. Soc., 135, pp.2013, 1988.
[2] K.Awazu, H.Kawazoe, K.Seki, “Growth mechanisms of silica glasses using the liquid phase deposition(LPD)”, J. Non-Cryst. Solids, 151, pp.102, 1992.
[3] A.Hishinuma, T.Goda, M.Kitaoka, S.Hayashi, H.Kawahara, “Formation of silicon dioxide films in acidic solutions”, App. Sur. Sci, 48/49, pp.405, 1991.
[4] C.F.Yeh, S.S.Lin, C.L.Chen, Y.C.Yang, “Novel Technique for SiO2 Formed by Liquid-Phase Deposition for Low-Temperature Processed Polysilicon TFT”, IEEE Electron Device Letters, 14, pp.403, 1993.
[5] C.F.Yeh, S.S.lin, T.Y.Hong, “Low-Temperature Processed MOSFET‘s with Liquid Phase Deposited SiO2-xFx as Gate Insulator”, IEEE Electron Device Letters, 16, pp.316, 1995.
[6] T.Homma, T.Katoh, Y.Yamada, Y.Murao, “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnection”, J. Electrochem. Soc., 140, pp.2410, 1993.
[7] T.Homma, T.Katoh, Y.Yamada, J. Shimizu, and Y.Murao, “ A NEW INTERLAYER FORMATION TECHNOLOGY FOR COMPLETELY PLANARIZED MULTILEVEL INTERCONNECTION BY USING LPD”, International Electron Device Meeting, pp.3, 1990.
[8] T.Homma, T.Katoh, Y.Yamada, J.Shimizu, and Y.Murao, “ Fully Planarized Multilevel Interconnection Using Selective SiO2 Deposition”, NEC Res. & Develop., 32, pp.315, 1991.
[9] C.F.Yeh, S.S.Lin, T.Z.Yang, C.L.Chen, and Y.C.Yang, “Performance and Off-State Current Mechanisms of Low-Temperature Processed Polysilicon Thin-Film Transistors with Liquid Phase Deposited SiO2 Gate Insulator”, IEEE Trans. Electron Devices, 41, pp.173, 1994.
[10] C.F.Yeh, C.L.Chen, Y.C.Yang, S.S.Lin, T.Z.Yang, and T.Y.Hong, “Low-Temperature-Processed Poly-Si Thin-Film Transistors Using Solid-Phase-Crystallized and Liquid-Phase-Deposited Gate Oxide”, Jpn. J. Appl. Phys. Part I, 33, pp.1798, 1994.
[11] C.F.Yeh and C.L.Chen, “Room-temperature selective growth of dielectric films by liquid-phase deposition”, Semicond. Sci. Technol., 9, pp.1250, 1994.
[12] C.F.Yeh, C.L.Chen, and G.H.Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only”, J. Electrochem. Soc., 141, pp.3177, 1994.
[13] J.S.Chou and S.C.Lee, “Improved process for liquid phase deposition of silicon dioxide”, Appl. Phys. Lett., 64, pp.1971, 1994.
[14] C.F.Yeh, T.Z.Yang, and T.J.Chen, “Characteristics of Self-Induced Lightly-Doped-Drain Polycrystalline Silicon Thin Film Transistors with Liquid-Phase Deposition SiO2 as Gate-Insulator and Passivation-Layer”, IEEE Trans. Electron Devices, 42, pp.307, 1995.
[15] M.S.Chen, J.S.Chou, and S.C.Lee, “Planarization of Amorphous Silicon Thin Film Transiators by Liquid Phase Deposition of Silicon Dioxide”, IEEE Trans. Electron Devices, 42, pp.1918, 1995.
[16] W.S.Lu and J.G.Hwu, “Preparation of fluorinated gate oxides by liquid phase deposition following rapid thermal oxidation”, Appl. Phys. Lett., 66, pp.3322, 1995.
[17] P.W.Lee, S.Mizuno, A.Verma, H.Tran, B.Nguyen, “Dielectric Constant and Stability of Fluorine-Doped Plasma Enhanced Chemical Vapor Deposited SiO2 Thin Films”, J. Electrochem. Soc., 143, pp.2015, 1996.
[18] J.S.Chou, S.C.Lee, “The initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition”, J. Electrochem. Soc., 141, pp.3214, 1994.
[19] P.C. Chen, K.Y.J.Hsu, H.L.Hwang, and J.Y.Lin, “Fundamental electrical properties of fluorinated and N2O plasma-annealed ultrathin silicon oxides grown by microwave plasma after glow oxide at low temperatures”, J. Appl. Phys., 76, pp.5508, 1994.
[20] T.Homma and Y.Murao, “Properties of liquid-phase-deposited SiO2 films for interlayer dielectrics in ultralarge-scale integrated circuit multilevel interconnections”, Thin Solid Films, 249, pp.15, 1994.
[21] C.F.Yeh, S.S.Lin, and C.L.Fan, “Thinner Liquid Phase Deposited Oxide for polysilicon Thin-Film Transistors”, IEEE Electron Device Letters, 16, pp.474, 1995.
[22] D. W. Hess, “Plasma-Enhanceed CVD: Oxide, Nitride, Transition metals, and Transition metal silicides,” J.Vac. Sci. Technol. A, Vol. 2, pp244-252. 1984.
[23] Y. Manabe and T. Mitsuyu, “Silicon Nitride Thin Films Prepared By the Electron Cyclotron Resonance Plasma Chemical Vapor Deposition Method “J. Appl. Phys. ,Vol. 66, No. 6, pp2475-2480, 1989.
[24] S. Lin, J. H. Ryu, and J. F. Wager, “Inhomogeneous Dielectrices Grown By PECVD”, Thin Solid Films, 236,pp. 64-66, 1993.
[25] S. M. Ojha, “Plasma-Enhanced Chemical Vapor Deposition of Thin Films”, Physics of Thin Films, 12, pp.237-296, 1982
[26] J. S. Chou and S.C. Lee, “Improved Process for Liquid Phase Deposition of Silicon Dioxide”, Appl. Phys. Lett. Vol. 64, No.15, pp1971-1973, 1994.
[27] M. Y. Doghish and F. D.Ho, “ A Comprehensive Analytical Model for Metal-Insulator-Semiconductor(MIS) Devices”, IEEE Trans. Electron Devices, Vol. 39, no.12, pp. 2771-2780 , 1992.
[28] C. P. Chen et al.,”Fluorineted Chemistry for High-Quality, Low Hydrogen Plasma-Deposited Silicon Nitride Films” , J. Apply. Phyic. , 62, 4, p1406, 1987.
[29] J. Wang, ”Vibrational Spectra of Vapor-Deposited Binary Phosphosilicate Glasses ”, J. of Non-Cryst. Solid, 20, p.83, 1976.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔