跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊坤傑
研究生(外文):Kun-Chieh Yang
論文名稱:MPEG音訊編碼多相濾波組之即時ASIC實現
論文名稱(外文):A Real-Time ASIC Implementation of Polyphase Filter Bank in MPEG Audio Coding
指導教授:陳進興陳進興引用關係
指導教授(外文):Chin-Hsing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:73
中文關鍵詞:音訊編碼多相濾波組
外文關鍵詞:Polyphase Filter BankMPEG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國際標準組織內的MPEG發展了一系列MPEG-1和MPEG-2之類的視聽覺壓縮標準,這些音訊編碼標準已被廣泛地應用在通訊、廣播和儲存的領域。為了達成這些應用的即時化,編碼和解碼系統必須使用硬體來完成。本論文設計一即時音訊編碼專用集成電路,此專用集成電路使用心脈式陣列來處理具規則、局部相關資料流的演算法,因此非常適合來完成快速的即時音訊編碼系統。
大多數的MPEG音訊編解碼器使用了像TMS320系列的一般用途數位訊號處理晶片,但單一個晶片不足以完成即時的編碼任務。為了提供一個低成本和即時的編解碼器,這些數位訊號處理晶片必須以特殊指定應用來完成。本論文提出的硬體設計乃以心脈式陣列為基本架構,極適合用來實現MPEG-1和MPEG-2壓縮標準的Layer I、Layer II和Layer III格式之音訊編碼濾波組,因此一濾波組為MPEG音訊編碼中計算量最多者。這個架構只使用了十六個乘法器和加法器來處理所有的分頻濾波組之演算,利用一組RAM來重組資料,以及一些ROM來儲存運算所需的係數,整個架構具有模組化和規則化的特色,非常適合於超大型積體電路的實現。跟現有的數位訊號處理晶片比較,我們的設計具有高硬體使用率和低複雜連接線,因此極適合MPEG音訊即時編碼之實現。

The MPEG (Moving Picture Experts Group) within the International Organization of Standardization (ISO) has developed a series of audio-visual standards known as MPEG-1 and MPEG-2. These audio coding standard are used in a wide variety of fields such as communication, broadcasting, and storage applications. To apply these applications in real-time, it is necessary to implement the encoding and decoding system in hardware. This thesis design an application-specific integrated circuit (ASIC) dedicated to real-time MPEG audio coding algorithms. Our ASIC implementation is based on systolic array architecture which is regular, localized and most suitable for real-time applications.
Most of the MPEG audio codec have been implemented by using a general- purpose DSP chip set such as the TMS320 series, but it is clear that a single conventional DSP has not been able to perform all the task required in real-time. In order to provide a low-cost and real-time codec, the DSP chip sets must be application specific. The systolic array based architecture proposed in this thesis for the filter bank of MPEG audio coding is capable of encoding MPEG-1and MPEG-2 standard audio bitstream for Layer-I, Layer-II and Layer-III. The architecture only uses sixteen multipliers and adders to compute the subband algorithm of the filter bank, one RAM to arrange data and some extra ROM to storage coefficients of computing. It possesses the feature of regularity and modularity, and is thus well suited to VLSI implementation. Compared to existing DSP chip set, our implementation has high utilization rate and low communication complexity, that makes it useful for applications required by MPEG audio coding.

Abstract I
Contents III
Figure CaptionsV
Table CaptionsVIII
CHAPTER 1 Introduction1
1.1 MPEG Audio Coding1
1.2 Analysis Subband Filter Bank4
1.3 Psycho-Acoustic Model5
1.4 Systolic Array6
1.5 Organization of This Thesis7
CHAPTER 2 Perceptual Coding of Digital Audio Signals8
2.1 Generic Perceptual Coding Concept8
2.2 Human Auditory Perception10
2.3 Auditory Masking Effect12
2.4 Transform Coding (TC) and Subband Coding (SBC)16
CHAPTER 3 An Overview of the MPEG Audio Compression Algorithm19
3.1 Basic Structure of ISO/MPEG/Audio Codec20
3.2 MPEG-1 Audio Coding21
3.2.1 Layer I, Layer II, and Layer III Coding Scheme21
3.2.2 Filter Bank24
3.2.3 Psycho-acoustic Model26
3.2.4 Bit-Stream Structure21
3.3 MPEG-229
CHAPTER 4 The Algorithm and Architecture of Subband Filter Bank31
4.1 Systolic Array31
4.1.1 The Properties of Systolic Array31
4.1.2 The Design Process of Systolic Array32
4.2 The Design Algorithm of Subband Filter Bank34
4.3 Mapping the Filter Bank Algorithm onto Systolic Array38
4.3.1 Windowing Subalgorithm39
4.3.2 DCT Subalgorithm46
4.4 The Combination of Windowing Part and DCT Part53
CHAPTER 5 The Practical Architecture and Simulation Result of Polyphase Filter Bank56
5.1 Circuit Simulation 56
5.2 Proposed Architecture of the Polyphase Filter Bank57
5.2.1 Windowing and DCT Unit58
5.2.2 Data Arrange Unit63
5.2.3 The Sort Unit66
5.2.4 The Control Unit67
5.2.5 Simulation of Subband Filter Bank69
CAHPTER 6 CONCLUSIONS70
References71

[1] J. Johnston, "Transform Coding of Audio Signals Using Perceptual Noise Criteria," IEEE J. Sel. Areas in Comm., pp. 314-323, Feb. 1988.
[2] K. Brandenburg, et al., "ASPEC: Adaptive Spectral Entropy Coding of High Quality Music Signals," in Proc. 90th Conv. Aud. Eng. Soc., Feb. 1991.
[3] Y. F. Dehery, et al., "A MUSICAM Source Codec for Digital Audio Broadcasting and Storage," in Proc. ICASSP-91, pp. 3605-3608, May 1991.
[4] K. Brandenburg, et al., "ISO-MPEG-1 Audio: A Generic Standard for Coding of High-Quality Digital Audio," J. Audio Eng. Soc., pp. 780-792, Oct. 1994.
[5] G. Stoll, et al., "Generic Architecture of the ISO/MPEG Audio Layer I and II: Compatible Developments to Improve the Quality and Addition of New Features," in Proc. 95th Conv. Aud. Eng. Soc., Oct. 1993.
[6] R. K. Jurgen, "Broadcasting with Digital Audio," IEEE Spectrum, pp. 52-59, Mar. 1996.
[7] A. Hoogendoorn, "Digital Compact Cassette," Proc. IEEE, pp. 1479-1489, Oct. 1994.
[8] ISO/IEC JTC1/SC29/WG11 MPEG, IS11172-3 "Information Technology - Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5Mbit/s, Part 3: Audio" 1992. (MPEG-1)
[9] ISO/IEC JTC1/SC29/WG11 MPEG, IS13818-3 "Information Technology - Coding of Moving Pictures and Associated Audio, Part 3: Audio" 1994. (MPEG-2)
[10] K. Konstantinides, "Fast Subband Filtering in MPEG Audio Coding" IEEE Signal Processing Letters, vol. 1, no. 2, pp. 26-28, February 1994.
[11] D. Y. Chan, J. F. Yang, and C. C. Fang, "Fast Implementation of MPEG Audio Coder Using Recursive Formula with Fast Discrete Cosine Transforms," IEEE trans. Speech and Audio processing, vol. 4, no. 2, pp. 144-148, March 1996.
[12] B. Scharf, "Critical bands," Foundation of Modern Auditory Theory, edited by J. V. Tobias, Orlando, FL: Academic Press, 1970.
[13] E. Zwicker and U. Zwicker, " Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System," J. Audio Eng. Soc., pp115-126, Mar. 1991.
[14] J. Zwislocki, "Analysis of Some Auditory Characteristics," in Handbook of Mathematical Psychology, R. Luce, etal., Eds., New Tork: John Wiley and Sons, Inc.,1965.
[15] M. Schroeder, et al., "Optimizing Digital Speech Coders by Exploiting Masking Properties of the Human Ear," J. Acoust. Soc. Am., pp. 1647-1652, Dec. 1979.
[16] H. Fletcher, "Auditory Patterns," Rev. Mod. Phys., pp. 47-65, Jan, 1940.
[17] Terchardt, E., "Calculating Virtual Pitch," Hearing Research, pp. 155-182, 1979
[18] P. Papamichalis, "MPEG Audio Compression: Algorithms and Implementation," in Proc. DSP 95 Int. Conf. On DSP, pp. 72-77, June 1995.
[19] K. Brandenburg, "OCF- A New Coding Algorithm for High Quality Sound Signals," in Proc. ICASSP-87, pp. 5.5.1-5.1.4, May 1987.
[20] Y. Mahieux, et al., "Transform Coding of Audio Signals Using Correlation Between Successive Transform Blocks," in Proc. Int. Conf. Acous., Speech and Sig. Process (ICASSP-89), pp. 2021-2024, May 1989.
[21] R. D. Jurgen, "Broadcasting with Digital Audio," IEEE Spectrum, pp. 52-59, March 1996.
[22] A. Hoogendorn, "Digital Compact Cassette," Proc. Of the IEEE, vol. 82, No. 10, pp. 1479-1489, Oct. 1994.
[23] G. Theile, G. Stoll, and M. Link, "Low Bit-Rate Coding of High-Quality Audio Signals. An Introduction to the MASCAM System," EBU Rev.-Tech., no. 230, pp. 158-181.
[24] R. N. J. Veldhuis, "Bit Rates in Audio Source Coding," IEEE J. Selected Areas in Commun., vol. 10, pp. 86-96, Jan. 1992.
[25] J. D. Johnston, "Transform Coding of Audio Signals Using Perceptual Noise Criteria, IEEE J. Selected Areas in Commun., vol. 6, pp. 314-323, Feb. 1988.
[26] S. Y. Kung, "VLSI Array Processors," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 110-294, 1988.
[27] H.J. Nussbaumer and M. Vetterli, "Computatinally Efficient QMF Filter Banks," in Proceeding ICASSP, pp.11.3.1-11.3.4,1984.
[28] K.R. Rao and J.J. Hwang, "Techniques and Standards for Image, Video, and Audio Coding," Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 242-272, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top