跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王納富
研究生(外文):Na-Fu Wang
論文名稱:以液相沉積法成長二氧化矽膜及其在半導體元件的應用
論文名稱(外文):Deposition of Silicon Dioxide Films by Liquid Phase Deposition Method and Its Application on Semiconductor Devices
指導教授:洪茂峰洪茂峰引用關係王永和王永和引用關係
指導教授(外文):Mau-Phon HoungYeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:137
中文關鍵詞:液相沉積二氧化矽金屬-絕緣體-矽太陽電池砷化鎵金屬-氧化物-半導體場效電晶體二氧化碳雷射退火磷化銦銻化汞鎘
外文關鍵詞:liquid phase depositionSiO2metal-insulator-silicon solar cellsgallium arsenide (GaAs)metal-oxide-semiconductor field effect transistor (MOSFET)CO2 laser annealingInPHgCdTe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出一個低溫液相沉積的方法,成長高品質的二氧化矽膜在各式半導體基板。由於此低溫沉積的優點,一個優良且穩定二氧化矽膜及其界面能被得到。因此,在這研究中我們已經成功地利用此低溫技術,去製造以矽為基板的MIS結構之太陽電池和砷化鎵為基板的金氧半場效電晶體。
在矽半導體技術方面,當元件尺寸縮小至微米甚至次微米,熱氧化技術將退化元件的特性及金屬線間的可靠度。所以,利用低溫沉積的技術去成長二氧化矽膜是迫切需要的。但是,利用此低溫技術沉積的二氧化矽膜品質仍然比熱氧化技術差,所以,本論文特別提出一種二氧化碳雷射退火的技術去進一步地改善二氧化矽膜品質。經雷射退火後,我們發現它的結構更緻密,而且界面電荷密度大大降低,使其二氧化矽膜品質和熱氧化膜相似。此外,由於此雷射退火能將氟原子的量適當地控制在二氧化矽膜,以至能增強界面的特性及元件可靠度,使它更適合用在極大型積體電路上。另一方面,利用此低溫技術製造以矽為基板的太陽電池,能發現一個有趣的現象─在二氧化矽膜的厚度超過傳統理論推得的二氧化矽膜厚度(30埃),其太陽電池的效率將大大地降低。但是,事實卻相反。我們發現在二氧化矽膜的厚度在50到150埃之間,仍有效率輸出。這可能是由於氟原子存在二氧化矽膜內,將增強障位高度及降低理想因子。我們以一個陷阱跳躍的傳導機制去解釋這現象。基於此理由,我們若能適當地控制氟的量,一個最佳的太陽電池效率為7.2%將被得到。
由於砷化鎵及磷化銦材料具有高的飽和速度,所以近年來已被利用去製造高速及光電元件。但是,由於此材料本身表面對溫度非常敏感,故需以低溫技術去沉積二氧化矽膜。明顯地,液相沉積技術是最佳的候選人。本論文亦使用此種技術去沉積二氧化矽膜在砷化鎵及磷化銦基板上,並且,從各種分析量測實驗得到一個優良及可靠的二氧化矽膜及其界面。在最佳的條件下,一個GaAs MOSFET是被製作。並且,得到一個優良的元件特性─轉移電導為31 mS/mm及截止電壓為-3 V。
由於,Hg1-xCdxTe (with x=0.2~0.3)是最受歡迎的遠紅外線材料,但是,它亦為表面對溫度敏感的材料,所以亦需要利用低溫技術去成長二氧化矽膜來保護其表面。本論文亦使用此種技術去沉積二氧化矽膜來保護此材料,以利元件的製作。此外,在成長之前為了增強成長的可能性及提高膜的品質,氨水處理此材料的表面是必要的。因此,一個高品質的二氧化矽膜亦被得到。它具有高的折射率(1.465)及低的蝕刻速率(34*/sec)。此外,它亦得到優良的電特性─表面電荷密度為-2.25*1010 cm-2,漏電流為0.356 nA在-5V) 及崩潰電場為超過650 KV/cm。這沉積的機制亦被提出。
A low temperature process (30~50℃) for the formation of high-quality SiO2 films using liquid phase deposition (LPD) method on the various semiconductor substrates was proposed and investigated in this thesis. It was established that good and reliable properties of SiO2 and SiO2/semiconductor substrates interface can be obtained from this process. Based on these results, we also utilized such a low temperature technique to fabricate the related semiconductor devices such as metal-insulator-silicon solar cells and gallium arsenide (GaAs) metal-oxide-semiconductor field effect transistor (MOSFET) in practice.
In Si semiconductor technology, it was known that as the devices are scaled down to micro and sub-micro region, classical thermal treatments in furnaces will cause to degrade the device characteristics and wiring reliability due mainly to dopant redistribution, thermal stress, and material interaction considerations. So, a low temperature process of LPD is very attractive in this field, especially for the formation of insulating layers. However, the quality of LPD-SiO2 is still worse those of the thermally grown oxide. In order to further improve quality of LPD-SiO2 for the ultra-large-scale integrated (ULSI) circuit applications, a CO2 laser annealing technique was presented. It was found that the structure of fluorinated silicon oxide after laser annealing will become much denser and the effective surface charge density (QSS/q) per unit area is reduced obviously. Based on the experimental results, it may be expected that the structure of a fluorinated LPD-SiO2 following CO2 laser annealing procedure is similar to those of the thermally grown layers. Because the amount of fluorine contained in SiO2 is appropriate after laser annealing, it can also enhance the LPD oxide reliability and interface characteristics for the metal-oxide-silicon (MOS) capacitors. In addition, a metal-insulator-semiconductor (MIS) solar cell using LPD oxide as the insulating layer, denoted by LPD-MIS solar cell, was fabricated in the study. It shows an interesting phenomenon that the LPD-MIS solar cells still work well for oxide thickness ranging from 50 to 150 *, which is much thicker than the limit of 30 * predicted by MIS theory. It was suggested that this interesting result may be due to barrier height enhancement and diode quality factor lowering caused by the fluorine content incorporated into SiO2 during the LPD-MIS solar cell fabrication process. Furthermore, a trap-assisted hopping conduction mechanism was proposed to explain the effect of the oxide traps, which were believed to the fluorine incorporated in the LPD-SiO2 films. Because the fluorine plays an important role in current conduction of LPD-MIS solar cells, we will appropriately control the amounts of fluorine incorporated into the LPD-SiO2 films by hydrofluosilicic acid concentrations to achieve optimal conversion efficiency. Besides, unlike conventional MIS structure, a modified device structure was also proposed to further improve the LPD-MIS solar cells performance. As a result, a maximum conversion efficiency of 7.2 % was obtained under the optimal process parameters.
Due to its high saturation velocity compared to silicon, much attention has been focused on GaAs and InP for high-speed electronic and optoelectronic device applications. However, the related devices made from these compound semiconductor materials are very sensitive to their surface structures. Considerable effort has been expended in finding a suitable technology for the formation of compatible insulating layers on the surfaces of III-V compound semiconductor. Obviously, the low temperature characteristics of LPD is favorable for the process on surface sensitive materials. In this thesis, we also utilized such a low temperature technique to deposit SiO2 films on GaAs and InP and attempt to explore the properties of the SiO2 layer and the SiO2-GaAs(InP) interface. Based on the experimental results, good and reliable quality of SiO2 is established by various analytical techniques. More specifically, a very sharp feature at the SiO2-GaAs (InP) interface is obtained by Auger electron spectroscopy (AES). Besides, the near room-temperature deposition shows more advantage in the electrical properties involving a low effective net surface charge density per unit area (QSS/q=2.57*1010 cm-2 for GaAs, 3.1*1011 cm-2 for InP), a small leakage current (1.7*10-9 A/cm2 for GaAs, 2.08*10-8 A/cm2 for InP, at 0.3 MV/cm), and a high dielectric breakdown strength (11.03 MV/cm for GaAs, 6.47 MV/cm for InP). Under an optimal depositing condition, GaAs MOSFET is fabricated using the LPD-SiO2 as the insulating layer in practice. A good characteristic of GaAs MOSFET is estimated to be about 31 mS/mm and -3V for the transconductance and pinch-off voltage, respectively.
In II-VI compound semiconductors, Hg1-xCdxTe (with x=0.2~0.3) is one of the most promising semiconductor materials for far-infrared photo-detectors. Due to its high chemical reactivity, infrared detectors made from this narrow band-gap material are very sensitive to its surface structure. Consequently, the surface of HgCdTe needs a high-quality surface passivation layer to ensure its stability for device applications. Obviously, the low temperature characteristics of LPD is favorable for the process on HgCdTe. To enhance the formation of SiO2, the HgCdTe surface has to be treated by ammonia solution before LPD. A thin native oxide which is formed by previous surface treatment involving OH- radicals will greatly enhance the SiO2 deposition on HgCdTe. Thus, SiO2 films with a high refractive index (1.465) and a low p-etching rate (34*/sec) were obtained. Auger electron spectroscopy (AES) depth profile shows less interdiffusion of constituent atoms between the SiO2 layer and the HgCdTe substrate. Electrical properties of the SiO2/p-HgCdTe interface are also characterized at 77 K. It is found that the p-HgCdTe surface is accumulated and the effective net surface charge density per unit area is estimated to be -2.25*1010 cm-2. The leakage current and dielectric breakdown strength are also found to be 0.356 nA (at -5V) and above 650 KV/cm, respectively. Furthermore, the growth mechanism of LPD-SiO2 on HgCdTe was proposed in the thesis.
cover
Contents
Abstract
Acknowledgments
List of Tables
List of Figures
CHAPTER 1 INTRODUCTION
§1-1 Background and Motivation
§1-2 Organization
References
CHAPTER 2 FORMATION OF SILICON DIOXIDE FILMS ON SILICON SUBSTRATES
§2-1 Introduction
§2-2 Experimental Details
§2-2-1 Liquid Phase Deposition System
§2-2-2 Sample Preparation
§2-2-3 Deposition Processes
§2-2-4 Analytical Measurements
§2-3 Results and Discussion
§2-3-1 Deposition Mechanisms of LPD-Si on Si
§2-3-2 Effects of Deposition,Parameters
§2-3-3 Optical Properties of LPD-Si
§2-3-4 Analysis of Physical/Chemical Characterizations
§2-3-5 Analysis of Electrical Characterizations
§2-3-6 Comparison of LPD-Si with Thermal Oxidation and CVD-Si
§2-4 Influence of C Laser Annealing on LPD-Si Films
§2-4-1 Improvement of Physical/Chemical Characterizations
§2-4-2 Improvement of Electrical Characterizations
§2-5 Fabrication of LPD-MIS Solar Cell
§2-5-1 Fabrication Processes
§2-5-2 Typical Output Performance of LPD-MIS Solar Cell
§2-5-3 Barrier Height Enhancement in LPD-MIS Solar Cell
§2-5-4 Conduction Mechanism in LPD-MIS Solar cell
§2-5-5 Dependence of Fluorine Contents on Output Performance
§2-6 Summary
References
CHAPTER 3 FORMATION OF SILICON DIOXIDE FILMS ON III-V SEMICONDUCTOR SUBSTRATES
§3-1 Introduction
§3-2 Experimental Details
§3-2-1 Liquid Phase Deposition System and Sample Preparation
§3-2-2 Deposition Processes
§3-2-3 Analytical Measurements
§3-3 Results and Discussion for LPD-Si on GaAs
§3-3-1 Analysis of Physical/Chemical Characterizations
§3-3-2 Effects of Deposition Parameters
§3-3-3 Analysis of Electrical Characterizations
§3-3-4 Reliability of LPD-Si on GaAs
§3-4 Results and Discussion for LPD-Si on InP
§3-4-1 Effects of Deposition Parameters
§3-4-2 Analysis of Physical/Chemical Characterizations
§3-4-3 Analysis of Electrical Characterizations
§3-5 Fabrication of GaAs MOSFET
§3-5-1 Introduction
§3-5-2 Device Structure
§3-5-3 Fabrication Processes
§3-5-4 Characterization of the GaAs MOSFET
§3-6 Summary
References
CHAPTER 4 DEPOSITION OF SILICON DIOXIDE FILMS ON Hg-xCdxTe SUBSTRATE
§4-1 Introduction
§4-2 Experimental Details
§4-2-1 Liquid Phase Deposition System and Sample Preparation
§4-2-2 Deposition Processes
§4-2-3 Analytical Measurements
§4-3 Results and Discussion
§4-3-1 Analysis of Physical/Chemical Characterizations
§4-3-2 Effects of Deposition Parameters
§4-3-3 Analysis of Electrical Characterizations
§4-3-4 Comparison of LPD-Si and Photo-CVD-Si
§4-4 Summary
References
CHAPTER 5 CONCLUSIONS
§5-1 Conclusions
§5-2 Major Contributions
Publication List
Vita
[1] K. Yamabe and K. Taniquchi, 〝Time-dependent dielectric breakdown of thin thermally grown SiO2 films〞, IEEE Trans. Electron Devices, Vol. ED-32, (1985), p. 423.
[2] H. Abe, F. Kiyosumi, K. Yoshioka, and M. Ino, 〝Analysis of defects in thin SiO2 thermally grown on Si substrate〞, in IEDM Tech. Dig., (1985), p. 372.
[3] N. Hirashita, I. Aikawa, T. Ajioka, M. Kobayakawa, F. Yokoyama, and Y. Sakaya, Proc. IEEE Int. Reliability Physics Symp., New Orleans, LA, (1990), p. 216.
[4] M. Kanazawa, M. Shishino, Y. Hata, and T. Umemoto, Proc. IEEE VLSI Multilevel Interconnection Conf., Santa Clara, CA, (1991), p. 221.
[5] S. Nguyen, D. Dobuzinsky, D. Harmon, R. Gleason, and S. Fridmann, J. Electrochem. Soc., 137, (1990), p. 2209.
[6] M. Matsuura, Y. Hayashide, H. Kotani, and H. abe, Jpn. J. Appl. Phys., 30, (1991), p. 1530.
[7] H. Kotani, M. Matsuura, A. Fujii, H. Genjou, and S. Nagao, Proc. IEEE Int. Electron Devices Meeting, Washington, DC, (1989), p. 669.
[8] C. Chiang, D. B. Fraser, and D. R. Denison, Proc. IEEE VLSI Multilevel Interconnection Conf., Santa Clara, CA, (1990), p. 381.
[9] D. A. J. Perry, and R. W. Boswell, Appl. Phys. Lett., 55, (1989), p. 148.
[10] T. H. Ning, 〝1mm MOSFET VLSI technology: Part IV- Hot electron design constrains〞, IEEE Trans. Electron Devices, Vol. ED-26, (1979), p. 346.
[11] N. Kasai, P.J. Wright, and K.C. Saraswat, IEEE Trans. Electron Device, 37, 1426 (1990).
[12] Y. Nishioka, Y. Ohji, K. Mukai, T. Sugano, Y. Wang, and T.P. Ma, Appl. Phys. Lett., 54, 1127 (1989).
[13] G.Q. Lo, W. Ting, J.H. Ahn, D.L. Kwong, and J. Kuehne, IEEE Trans. Electron Devices, 39, 148 (1992).
[14] T. Usami, K. Shimokawa, and M. Yoshimaru, Jpn. J. Appl. Phys., 33, 408 (1994).
[15] K. Brennan, and K. Hess, Solid-State Electron, 27, (1984), p. 347.
[16] P. D. Maycock, Solid0State Electron, 10 (1967), p. 161.
[17] W. J. Devlin, K. T. Ip, D. P. Leta, L.F. Eastman, G. H. Morrison, and J. Comas, in Gallium Arsenide and Related Compounds 1978, Int. Phys. Conf. Ser., Vol. 45, p. 510.
[18] M.B. Reine, A.K. Sood, and T.J. Tredwell: Semiconductors and Semimetals, eds. R.K. Willardson, and A.C. Beer (Academic Press, New York, 1981) Vol. 18, Chap. 6, p.203.
[19] Y. Robach, J. Joseph, E. Bergignat and G. Hollinger: J. Electrochem. Soc. 136, (1989), p. 2957.
[20] S. K. Ghandhi, VLSI Fabrication Principle: Silicon and Gallium Arsenide. New York: John Wiley & Sons, Inc., (1994).
[21] Y. Nemirovsky, R. Goshen, and I. Kidon, J. Appl. Phys., 53, (1982), p. 4888.
[22] L. G. Meiners, J. Vac. Sci. Technol., 19, (1981), p. 373.
[23] S. A. Malyshev and N. V. Babushkina, Solid-State Electronics, 42, (1998), p. 217.
[24] C. Licoppe, F. Wattine, C. Meriadec, J. Flicstein and Y. I. Nissim, J. Appl. Phys., 68, (1990), p. 5636.
[25] J. Woodward, D. C. Cameron, L. D. Irving and G. R. Jones, Thin Solid Films, 85, (1981), p. 61.
[26] M. T. Fowler, M. Suzuki, A. K. Engel, K. Asano and T. Iton, J. Appl. Phys., 62, (1987), p. 3427.
[27] D. L. Lile and D. A. Collins, Appl. Phys. Lett., 28, (1976), p.554.
[28] Y. Nemirovsky, and G. Bahir, J. Vac. Sci. Technol., A7, (1989), p. 450.
[29] T. Onuma, H. Harao, and T. Sugawa, J. Electrochem. Soc. 129, (1982), p. 837.
[30] J. Gyulai, J. W. Mayer, I. V. Mitchell, and V. Rodriguetz, Appl. Phys. Lett., 17, (1970), p. 332.
[31]U. Konig, and E. Sasse, J. Electroche. Soc., 130, (1983), p. 950.
[32] J.S. Chou, and S.C. Lee, J. Electrochem. Soc., 141, (1994), p. 3214.
[33] K. Awazu, H. Kawazoe, and K. Seki, Journal of Non-crystalline Solids, 151, (1992), p. 102.
[34] C. F. Yeh, C. L. Chen, and G. H. Lin, J. Electroche. Soc., 141, (1994), p. 3177.
[35] T. Homma, T. Katoh, Y. Yamada, and Y. Murao, J. Electroche. Soc, 140, (1993), p. 2410.
[36] S. Yoshitomi, S. Tomioka, and N. Honeji, Proceedings of the 1992 international Electron Devices and Materials Symp., Taipei, Taiwan, ROC, (1992), p. 22.
[37] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, IEEE Electron Devices Letters, 14, (1993), p. 403.
[1] S. K. Ghandhi, 〝VLSI Fabrication Principles: Silicon and Gallium Arsenide〞, John Wiley & Sons Inc., New York, (1994).
[2] S. Suyama, A. Okamoto, and T. Serikawa, 〝Electrical characteristics of MOSFETs utilizing oxygen-argon sputter-deposited gate oxidefilms〞, IEEE Trans. Electron Devices, ED-34, (1987), p. 2124.
[3] J. Lee, L. C. Chen, and C. Hu, 〝Electrical characteristics of MOSFETs using low-temperaturechemical-vapor-deposited oxide〞, IEEE Electron Devices Lett., EDL-9, (1988), p. 324.
[4] D. A. Baglee, 〝A review of recent developments in thin gate dielectrics for very large scale integration〞, J. Vac. Sci. Tech. A, 4, (1986), p. 1002.
[5] S. Nguyen, D. Dobuzinsky, D. Harmon, R. Gleason, and S. Fridmann, J. Electrochem. Soc., 137, (1990), p. 2209.
[6] M. Matsuura, Y. Hayashide, H. Kotani, and H. abe, Jpn. J. Appl. Phys., 30, (1991), p. 1530.
[7] H. Kotani, M. Matsuura, A. Fujii, H. Genjou, and S. Nagao, Proc. IEEE Int. Electron Devices Meeting, Washington, DC, (1989), p. 669.
[8] C. Chiang, D. B. Fraser, and D. R. Denison, Proc. IEEE VLSI Multilevel Interconnection Conf., Santa Clara, CA, (1990), p. 381.
[9] D. A. J. Perry, and R. W. Boswell, Appl. Phys. Lett., 55, (1989), p. 148.
[10] T. H. Ning, 〝1mm MOSFET VLSI technology: Part IV- Hot electron design constrains〞, IEEE Trans. Electron Devices, Vol. ED-26, (1979), p. 346.
[11] N. Kasai, P.J. Wright, and K.C. Saraswat, IEEE Trans. Electron Device, 37, 1426 (1990).
[12] Y. Nishioka, Y. Ohji, K. Mukai, T. Sugano, Y. Wang, and T.P. Ma, Appl. Phys. Lett., 54, 1127 (1989).
[13] G.Q. Lo, W. Ting, J.H. Ahn, D.L. Kwong, and J. Kuehne, IEEE Trans. Electron Devices, 39, 148 (1992).
[14] T. Usami, K. Shimokawa, and M. Yoshimaru, Jpn. J. Appl. Phys., 33, 408 (1994).
[15] H. Nagayama, H. Honda and H. Kawahara, J. Electrochem. Soc., 135, (1988), p. 2013.
[16] J. S. Chou, and S. C. Lee, Appl. Phys. Lett., 64, (1994), p. 1971.
[17] T. Homma, and Y. Murao, Thin Solid Films, 249, (1994), p. 15.
[18] T. Homma, and Y. Murao, Thin Solid Films, 249, (1994), p. 15.
[19] C.F. Yeh, and S.S. Lin, J. Non-Cryst. Solids, 187, (1995), p. 81.
[20] W.S. Lu,and J.G. Hwu, Appl. Phys. Lett., 66, (1995), p. 3322.
[21] L.W. Boyd, J. Appl. Phys., 54, (1983), p. 3561.
[22] X.F. Huang, X.M. Bao, and J. Chen, Phys. Stat. Sol., 113, (1989), p. 453.
[23] M. Y. Doghish and F. D. Ho, IEEE Trans. Electron Devices, 40, (1993), p. 1446.
[24] J. S. Chou, and S. C. Lee, J. Electrochem. Soc., 141, (1994), p. 3214.
[25] K. Awazu, H. Kawazoe, and K. Seki, J. Non-Cryst. Solids, 151, (1992), p. 102.
[26] C. F. Yeh, and C. L. Chen, Semicond. Sci. Technol., 9, (1994), p. 1250.
[27] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, ang H. Kawahara, Appl. Surf. Sci., 48, (1991), p. 405.
[28] H. Kawahara, T. Goda, H. Nagayama, H. Honda, and A. Hishinuma, Int. Congress Opt. Sci. Eng. Apr., 1128, (1989), p. 2.
[29] T. Homma, and Y. Murao, Thin Solid Films, 249, (1994), p. 15.
[30] Y. Ikeda, Y. Numasawa, and M. Sakamoto, J. Electron. Mater., 19, (1990), p. 45.
[31] S. M. Sze, 〝Physics of Semiconductor Devices〞, Wiley, New York, (1981).
[32] Akihiro Hishinuma, Takuji Goda, Masaki Kitaoki, Shiego Hayashi, and Hideo Kawahara, Applied Surface Science, 48/49, (1991), p. 405.
[33] G. Lucovsky, and M. J. Manitini, J. Vac. Sci. Technol. B 5, (1987), p. 530.
[34] T. Homma, T. Katoh, Y. Yamada, J. Shimizu, and Y. Murao, Symposium on VLSI Technology, (1990), p. 3.
[35] M. Yoshimaru, S. Koizumi, and K. Shimokawa, J. Vac. Sci. & Technol,. A15, (1997), p. 2908.
[36] M. Yoshimaru, S. Koizumi, and K. Shimokawa, J. Vac. Sci. & Technol., A15, (1997), p. 2915.
[37] U.S. Kim, C.H. Wolowodiuk, R.J. Jaccodine, F. Stevie, and P. Kahora, J. Electrochem. Soc., 137, (1990), p. 2291.
[38] S. Banerjee, B. Shen, I. Chen, J. Bohlman, G. Brown, and R. Doering, J. Appl. Phys., 65, (1989), p. 1140.
[39] S. Zaima, T. Furuta, Y. Koide, and Y. Yasuda, J. Electrochem. Soc., 137, (1990), p. 2876.
[40] T.Homma, T. Katoh, Y.Yamada, and Y.Murao, J. Electrochem. Soc., 140 (1993), p. 2410.
[41] A.Kalnitsky, S.P.Tay, J.P.Ellul, S.Chongsawangvirod, J.Andrews, and E.A.Irene, J. Electrochem. Soc., 137, (1990), p. 234.
[42] H. C. Card, Solid-St. Electron., 20 , (1977), p. 971.
[43] E. Fabre, App. Phy. Lett., 29, (1976), p. 607.
[44] W. A. Anderson, J. K. Kim and A. E. Delahoy, IEEE Trans. Electron Devices, 24, (1977), p. 453.
[45] D. L. Pulfrey, IEEE Trans. Electron Devices, 23, (1976), p. 587.
[46] S. I. Fonash, J. Appl. Phys., 46, (1976), p. 1286.
[47] T. Homma, R. Yamagushi, and Y. Murao, J. Electrochem. Soc., 140, (1993), p. 687.
[48] T.Tiedje, E.Yablonovitch, G.D.Cody, and B.G.Brooks, IEEE Trans. Electron Devices, 31 (1984), p. 711.
[49] P.Campbell, and M.A.Green, IEEE Trans. Electron Devices, 33 (1986), p. 234.
[50] T.Homma and Y.Murao, Thin Solid Films, 249 (1994), p. 15.
[51] P.C.Chen, K.Y.J.Hsu, and H.L.Hwang, J. Appl. Phys., 76 (1994), p. 5508.
[52] C.F.Yeh, S.S.Lin, and C.L.Fan, IEEE Elec. Dev. Lett., 16 (1995), p. 473.
[53] C. F. Yeh, C.L.Chen, Y.C.Yang, S.S.Lin, T.Z.Yang, and T.Y,Hong, Jpn. J. Appl. Phys., 33 (1994), p. 1798.
[1] S. K. Ghandhi,〝VLSI Fabrication Principles:Silicon and Gallium Arsenide.〞, New York, John Wiley & Sons, Inc., 1994.
[2] D. J. Coleman, D. W. Shaw, and R. D. Dobrott,〝On the mechanism of GaAs anodization〞, J. Electrochem. Soc., 124, (1997), p. 239.
[3] Y. Robach, J. Joseph, E. Bergignat and G. Hollinger: J. Electrochem. Soc. 136, (1989), 2957.
[4] Y. Nemirovsky, N. Amir, and L. Djaloshinski, J. Electron. Mater. 24, 647 (1995).
[5] T. Sawada, S. Itagaki, H. Hasegawa, and H. Ohno, IEEE Trans. Electron Decices, 31, (1984), p. 1038.
[6] D. L. Lile and D. A. Collins: Appl. Phys. Lett. 28 (1976) 554.
[7] W. Y. Lum and A. R. Clawson: J. Appl. Phys. 50 (1979) 5296.
[8] S. P. Murarka, Appl. Phys. Lett., 26, (1975), p. 180.
[9] L. G. Meiners: J. Vac. Sci. Technol. 19 (1981) 373.
[10] S. A. Malyshev and N. V. Babushkina: Solid-State Electronics: 42 (1998) 217.
[11] C. Licoppe, F. Wattine, C. Meriadec, J. Flicstein and Y. I. Nissim: J. Appl. Phys. 68 (1990) 5636.
[12] J. Woodward, D. C. Cameron, L. D. Irving and G. R. Jones: Thin Solid Films 85 (1981) 61.
[13] H. Nagayama, H. Honda and H. Kawahara: J. Electrochem. Soc. 135 (1988) 2013.
[14] P. N. Sen and M. F. Thorpe, Phys. Rev. B, 15, (1977), p. 4030.
[15] S. Tiwari, S. L. Wright, and J. Batey, IEEE Electron Devices Letters, 9, (1988), p. 488.
[16] H. J. Yoon, M. H. Choi, and I. S. Park, J. Electrochem. Soc., 139, (1992), p. 3229.
[17] R. Williams, 〝Modern GaAs Processing Methods〞, ch. 2, Boston London, Artech House, 1990.
[1] M.B. Reine, A.K. Sood, and T.J. Tredwell: Semiconductors and Semimetals, eds. R.K. Willardson, and A.C. Beer (Academic Press, New York, 1981) Vol. 18, Chap. 6, p.203.
[2] J.H. Jeong, H.C. Lee, and C.K. Kim, Jpn. J. Appl. Phys. 31, L1785 (1992).
[3] Y. Nemirovsky, N. Amir, and L. Djaloshinski, J. Electron. Mater. 24, 647 (1995).
[4] N. Kajihara, G. Sudo, Y. Miyamoto, and K. Tanikawa, J. Electrochem. Soc. 135, 1252 (1988).
[5] B.K. Janousek, R.C. Carscallen, and P.A. Bertrand, J. Vac. Sci. Technol. A1, 1723 (1983).
[6] J.A. Wilson, and V.A. Cotton, J. Appl. Phys. 57, 2030 (1985).
[7] B.K. Lanousek, and R.C. Carscallen, J. Vac. Sci. Technol. A3, 195 (1985).
[8] J F. Wager, and D.R. Rhiger, J. Vac. Sci. Technol. A3, 212 (1985).
[9] J.D. Lin, Y.K. Su, S.J. Chang, M. Yokoyama, and F.Y. Juang, J. Vac. Sci. Technol. A12, 7 (1994).
[10] Y. Nemirovsky, and G. Bahir, J. Vac. Sci. Technol. A7, 450 (1989).
[11] H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc. 135, 2013 (1988).
[12] J.S. Chou, and S.C. Lee, J. Electrochem. Soc. 141, 3214 (1994).
[13] K. Shimanoe, and M. Sakashita, Jpn. J. Appl. Phys. 30, 2723 (1991).
[14] C. Wei, K.K. Mishra, and K. Rajeshwar, Chem. Mater. 4, 77 (1992).
[15] G.H. Winton, K. Prasad, L. Faraone, and M.A.C. Hotchkiss, J. Electron. Mater. 22, 1 (1993).
[16] M. Jain, B.D. Nener, N. Warrington, M.V. Baker, J.L. Robins, and L. Faraone, J. Electrochem. Soc. 142, 2480 (1995).
[17] Nili Mainzer, Eliezer Weiss, Daniel Laser, and Michael Shaanan, J. Vac. Sci. Technol. A7, 460 (1989).
[18] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, "Handbook of x-ray photoelectron spectroscopy", Published by Perkin-Elmer Corporation Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie.
[19] T. Takahagi, A. Ishitani, H. Kuroda, and Y. Nagasawa, J. Appl. Phys. 69, 803 (1991).
[20] W.A. Pliskin, J. Vac. Sci. & Technol. 14, 1064 (1977).
[21] D.H. Rhiger, and R.E. Kvaas, J. Vac. Sci. Technol. 21, 168 (1982).
[22] M.P. Houng, Y.H. Wang, N.F. Wang, C.J. Huang, and W.J. Chang, Jpn. J. Appl. Phys. 36, L696 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top